
CopperSpice:
A Pure C++ GUI Library

Barbara Geller & Ansel Sermersheim
CPPCon - September 2015

1

Introduction

● What is CopperSpice
○ Why we developed CopperSpice
○ Drawbacks of Qt
○ Advantages of CopperSpice

● CopperSpice Internals
○ Implementing Reflection in C++11
○ Signals & Slots

● Future plans for CopperSpice
○ Developers & Users
○ Where is CopperSpice headed

2

Why we Developed CopperSpice

● Many C++ applications need a GUI
● Started using Qt 4 libraries in 2009

● Nokia bought Qt from TrollTech (June 2008)

● Nokia major reorganization (Feb 2011)

● Nokia sold Qt licensing to Digia (March 2011)

● Digia acquires Qt from Nokia (Sept 2012)

● Qt 5.0 initial release Dec 2012
● Qt 5.6 LTS estimated release Dec 2015

3

Why we Developed CopperSpice

● Contributing to Qt Development
○ CLA concerns - Qt Company can use your Open Source

contributions for their closed source product
○ Summit Conferences have been invitation only
○ Qt Company develops both the Closed & Open Source

versions of Qt

● Qt 4 support ending Dec 2015
○ support may be available by paid contract only

4

Drawbacks of Qt 4 and Qt 5

● Meta Object Compiler (moc)
○ moc runs on your .h files and produces .cpp files which

are compiled and linked into your application
○ moc is a code generator

○ no native support in standard build systems
○ compound types like QMap do not work in Properties
○ typedefs do not work
○ code moc generates is mostly string tables
○ does not support templates
○ every passed parameter is cast to a void *

5

Building Qt 4 or Qt 5

● Moc
○ must be built before building QtCore

● Bootstrap Library
○ bootstrap is a library used when building moc
○ same source used for bootstrap and QtCore
○ #ifdef used to decipher if building bootstrap or QtCore

● QMake (build system)

○ requires “bootstrap” version of the QtCore library
○ required to build Qt

6

What is CopperSpice

● On May 21 2012 we forked Qt 4.8
● GNU Autotools Build System
● CMake Build System is under development

● CopperSpice is written in pure C++11
● CS can be linked directly into any C++ application

● Qt Meta Object Compiler (moc) is obsolete and is
not required when building CopperSpice or your
C++ applications

7

Advantages of CopperSpice

● Template classes can inherit from QObject
● Compound data types are supported
● Your application can use any build system
● Container library improvements
● Obsolete source code removed
● Signal activation does not lose type information
● Improved API documentation

● CopperSpice is not Qt 4, it is better
● CopperSpice is not Qt 5, it is better

8

CopperSpice Libraries

● CsCore
● CsGui
● CsNetwork
● CsOpenGL
● CsSql
● CsXml
● CsWebKit
● Phonon
● And more. . .

Libraries begin with Cs, classes still use Q for API compatibility 9

Moving from Qt to CopperSpice

● PepperMill Utility
○ we used PM to convert the Qt library header files
○ Qt syntax was changed to CS syntax

○ you can modify your Qt header files by hand or use
PepperMill to automate the process

○ PepperMill is only used one time

10

Why CopperSpice requires C++11

● type traits
● enable_if
● decltype with an expression (expression SFINAE)
● tuples, templates to deconstruct a tuple
● constexpr
● lambda functions
● variadic templates
● templates to build a variadic parameter list

11

CopperSpice Supported Compilers

● GCC 4.7.2 or greater
○ tested on gcc 4.7.2, 4.8, 4.9, 5.1

● Windows - MinGW 32 bit and 64 bit
○ numerous versions of MinGW exist
○ links for MinGW located on our website

● Clang 3.4 or greater
○ tested on clang 3.4, 3.5, 3.6

12

CopperSpice Unsupported Compilers (For Now)

● MSVC 15
○ missing expression SFINAE
○ partial support for initializer lists
○ limited support for constexpr

● MSVC 13
○ no support for expression SFINAE
○ no support for initializer lists
○ no support for constexpr

We value MSVC and will continue to monitor their progress.

13

CopperSpice Internals

● What problem did moc solve?

● Moc solved the problem that C++ does not
implement or natively support Reflection
○ ISO C++ study group for Reflection exists
○ very unlikely Reflection will be added in C++17

14

What is Reflection

● RTTI (run time type information)

○ dynamic_cast<T> and typeid

● Introspection
○ examine data, methods, and properties at runtime

● Reflection
○ modify data, methods, and properties at runtime

A “property” is similar to a class data member
15

Where is Reflection Used

● Signals
● Slots
● Properties
● Enums
● Invokable Constructors
● UI Designer
● ...

16

What are Signals and Slots

● Signal
○ notification something occurred

● Slot
○ an ordinary method

● Connection
○ associates a Signal with a Slot
○ when the Signal is emitted the Slot is called
○ a given Signal can be connected to multiple Slots

17

What are Signals and Slots

● Boost Signals
○ each signal is an object
○ adding or removing a signal breaks ABI
○ slots are called only on the emitting thread

18

How is a Signal Processed

● User presses a mouse button
● Mouse button event is processed
● Signal QPushButton::clicked() is emitted

● Qt 4 or Qt 5 QPushButton::clicked()
○ method is generated by moc, stored in a string table
○ all passed parameters are cast to void *
○ activate() is called with an array of void *

● CopperSpice QPushButton::clicked()
○ method is created by a macro
○ full parameter list with complete data types
○ activate<Args…>() is called 19

Sample Moc Code

void QPushButton::clicked(bool _t1) {
 void *_a[] = { Q_NULLPTR, const_cast<void*>(
 reinterpret_cast<const void*>(&_t1)) };
 QMetaObject::activate(this, &staticMetaObject, 0, _a);
}
void QPushButton::qt_static_metacall(QObject *_o, QMetaObject::Call _c,
 int _id, void **_a)
{
 if (_c == QMetaObject::InvokeMetaMethod) {
 QPushButton *_t = static_cast<QPushButton *>(_o);
 Q_UNUSED(_t)
 switch (_id) {
 case 0: _t->clicked((*reinterpret_cast< bool*(*)>(_a[1])));
 break;
 default: ;
 }
 }
 // ...
}

20

Reflection in CopperSpice

● Signal & Slot meta data must be registered

● At compile time, the registration process is
initialized by macros in your .h file

● At run time, the registration methods are called
automatically to set up the meta data

● Registration of class meta data occurs the first
time a specific class is accessed

21

Why is Registration Required

● When a Signal / Slot connection is made, you can
specify either method by name

● connectSlotsByName()
○ called by generated code from the UI Designer
○ automatically connects Signals with Slots

● Plugins used in the UI Designer
● Query any child of QObject for a list of methods or

properties belonging to the object

22

Declarations in your .h File

// signal & slot declarations
public:
 CS_SIGNAL_1(Public, void clicked(bool status))
 CS_SIGNAL_2(clicked,status)

 CS_SLOT_1(Public, void showHelp())
 CS_SLOT_2(showHelp)

23

Connections in your .cpp File

// 3 different ways to make the same connection
connect(myButton, “clicked(bool)”,
 this, “showHelp()”);

connect(myButton, &QPushButton::clicked,
 this, &Ginger::showHelp);

connect(myButton, &QPushButton::clicked,
 this, [this](){showHelp()});

24

Runtime Activation

● QObject::activate<Args...>()

○ template method
○ called every time a Signal is emitted
○ compares the Signal with the list of existing connections
○ when a match is found the associated Slot is called

○ multiple Slots can be connected to a given Signal
○ queued connections can cross threads

25

Techniques used to Implement Reflection

● Slot macro
○ CS_SLOT_1(Public, void showHelp())
○ CS_SLOT_2(showHelp)

● counter is used to “chain” methods which
register the actual Slot meta data

● template class wraps an integer value
● method overloading
● constexpr
● decltype

26

Our Goal

27

● cs_register() will do something and then call the
“next cs_register” method

cs_register(0) {
cs_register(1);

}

cs_register(1) {
cs_register(2);

}

Implementation

28

● “zero” and “one” are integer values
● method overloading is based on data types
● create a class template to wrap the int value

cs_register(0) {
cs_register(1);

}

Template Class with an Integer Argument

template<int N>
class CSInt : public CSInt<N - 1> {

public:
static constexpr const int value = N;

};

template<>
class CSInt<0> {

public:
static constexpr const int value = 0;

};

// inheritance relationship, “3” inherits from “2”,
”2” inherits from “1”, and “1” inherits from “0” 29

Class Ginger Expansion (after pre-processing)

class Ginger : public QObject
{
 public:
 template<int N>
 static void cs_regTrigger(CSInt<N>) { }

 static constexpr CSInt<0> cs_counter(CSInt<0>);

// this code is expanded from a macro which is called

// at the beginning of your class

30

Example Class (after preprocessing)

// macro expansion from line 42 CS_TOKENPASTE2(value_, __LINE__)
static constexpr const int value_42 =
 decltype(cs_counter(CSInt<255>{}))::value;

static constexpr CSInt<value_42 + 1> cs_counter(CSInt<value_42 + 1>);
// additional code . . .

// macro expansion from line 43 CS_TOKENPASTE2(value_, __LINE__)
static constexpr const int value_43 =
 decltype(cs_counter(CSInt<255>{}))::value;

static constexpr CSInt<value_43 + 1> cs_counter(CSInt<value_43 + 1>);
// additional code . . .

// what is value_42 ? what is value_43 ? 31

Macro SLOT Expansion (after pre-processing)

// macro expansion from line 42 CS_TOKENPASTE2(value_, __LINE__)
void showHelp();

static constexpr const int value_42 =
 decltype(cs_counter(CSInt<255>{}))::value;

static constexpr CSInt<value_42 + 1> cs_counter(CSInt<value_42 + 1>);

static void cs_regTrigger(CSInt<value_42>)
{
 cs_class::staticMetaObject().register_method(“showHelp",
 &cs_class::showHelp, QMetaMethod::Slot, "void showHelp()",
 QMetaMethod::Public);

 cs_regTrigger(CSInt<value_42 + 1>{});
}

32

Challenges with CopperSpice

● Registration process
○ Signals, Slots, Properties, and Invokable methods

● Store method pointer for Signal & Slot methods
● Obtaining the values of an Enum

● Benefits to the CopperSpice Registration System
○ clean syntax
○ improved static type checking
○ no lost data type information
○ no string table comparisons
○ no limit on parameter type or number of parameters

33

CopperSpice Work in Progress

● CS Container Classes
○ thin wrappers around the STL C++11 containers
○ we will maintain CS API

● Benefits
○ reverse iterators, which have been missing

○ QList has performance issues and the Qt dev team
recommends avoiding this container

○ difficult to avoid QList since it is the return type for
many numerous methods

○ many of the containers have exception safety problems 34

Future Plans for CopperSpice

● Use the C++11 threading library
● Back port additional classes from Qt 5
● Add support for smart pointers
● Optimize QVariant
● Investigate switching from WebKit to Chromium
● Android support
● Stand alone library containing Signals & Slots
● Add cmake / ninja to our CI system

35

How to contribute to CopperSpice

● Developers
○ we welcome C++ enthusiasts who would like to

contribute to CopperSpice
○ help us improve the documentation

● Using CopperSpice
○ if your C++ application requires a GUI we encourage

you to use CopperSpice
○ available now for Linux, OS X, and Windows

36

KitchenSink Application

● Music Player
● HTML Viewer
● Font Selector
● Standard Dialogs
● XML Viewer
● Calendar Widget
● Sliders
● Tabs
● Analog Clock
● And More. . .

37

Libraries & Applications

● CopperSpice
○ Libraries for developing GUI applications

● PepperMill
○ Converts old headers to CS standard C++ header files

● KitchenSink
○ Over 30 CopperSpice demos in one application

● Diamond
○ Programmers Editor which uses the CopperSpice

libraries
● DoxyPress & DoxyPressApp

○ Documentation program, works with C++11
38

Where to find CopperSpice

● www.copperspice.com
● download.copperspice.com
● forum.copperspice.com

● ansel@copperspice.com
● barbara@copperspice.com

● Questions? Comments?

39

