CopperSpice:
A Pure C++ GUI Library

Barbara Geller & Ansel Sermersheim
CPPCon - September 2015

Introduction

e What is CopperSpice
o Why we developed CopperSpice
o Drawbacks of Qt
o Advantages of CopperSpice
e CopperSpice Internals
o Implementing Reflection in C++11
o Signals & Slots
e Future plans for CopperSpice
o Developers & Users
o Where is CopperSpice headed

Why we Developed CopperSpice

Many C++ applications need a GUI
Started using Qt 4 libraries in 2009

Nokia bought Qt from TrollTech (June 2008)
Nokia major reorganization (reb 2011)
Nokia sold Qt licensing to Digia march 2011)
Digia acquires Qt from Nokia (sept 2012)
Qt 5.0 initial release Dec 2012

Qt 5.6 LTS estimated release Dec 2015

Why we Developed CopperSpice

e Contributing to Qt Development

o CLA concerns - Qt Company can use your Open Source

contributions for their closed source product
o Summit Conferences have been invitation only

o Qt Company develops both the Closed & Open Source
versions of Qt

e Qt 4 support ending Dec 2015
o support may be available by paid contract only

Drawbacks of Qt 4 and Qt 5

e Meta Object Compiler (moc)

o moc runs on your .h files and produces .cpp files which
are compiled and linked into your application

moc is a code generator

O

no native support in standard build systems
compound types like QMap do not work in Properties
typedefs do not work

code moc generates is mostly string tables

does not support templates

every passed parameter is cast to a void *

O O O O O O

Building Qt 4 or Qt 5

e Moc
o must be built before building QtCore

e Bootstrap Library
o bootstrap is a library used when building moc
o same source used for bootstrap and QtCore

o #ifdef used to decipher if building bootstrap or QtCore

® QMake (build system)
o requires “bootstrap” version of the QtCore library
o required to build Qt

What is CopperSpice

e On May 21 2012 we forked Qt 4.8
e GNU Autotools Build System
e (CMake Build System is under development

e CopperSpice is written in pure C++11
e (S can be linked directly into any C++ application

e Qt Meta Object Compiler (moc) is obsolete and is
not required when building CopperSpice or your
C++ applications

Advantages of CopperSpice

Template classes can inherit from QObject
Compound data types are supported

Your application can use any build system
Container library improvements

Obsolete source code removed

Sighal activation does not lose type information
Improved APl documentation

CopperSpice is not Qt 4, it is better
CopperSpice is not Qt 5, it is better

CopperSpice Libraries

CsCore
CsGui
CsNetwork
CsOpenGL
CsSql

CsXml
CsWebKit
Phonon

And more. . .

Libraries begin with Cs, classes still use Q for APl compatibility ,

Moving from Qt to CopperSpice

e PepperMill Utility

@)

O

we used PM to convert the Qt library header files
Qt syntax was changed to CS syntax

you can modify your Qt header files by hand or use

PepperMill to automate the process
PepperMill is only used one time

10

Why CopperSpice requires C++11

type traits

ena
dec
tup

ole_if
type with an expression (expression SFINAE)

les, templates to deconstruct a tuple

constexpr

lam

bda functions

variadic templates
templates to build a variadic parameter list

11

CopperSpice Supported Compilers

o GCC4.7.2 or greater
o tested ongcc4.7.2, 4.8, 4.9, 5.1

e Windows - MinGW 32 bit and 64 bit

o numerous versions of MinGW exist
o links for MinGW located on our website

e (Clang 3.4 or greater
o tested on clang 3.4, 3.5, 3.6

12

CopperSpice Unsupported Compilers (For Now)

e MSVC 15

o missing expression SFINAE
o partial support for initializer lists

o limited support for constexpr

e MSVC 13

o no support for expression SFINAE
o no support for initializer lists

o no support for constexpr

We value MSVC and will continue to monitor their progress.

13

CopperSpice Internals

e What problem did moc solve?

e Moc solved the problem that C++ does not

implement or natively support Reflection
o 1SO C++ study group for Reflection exists
o very unlikely Reflection will be added in C++17

14

What is Reflection

e RTTI (run time type information)
o dynamic_cast<T> and typeid

e Introspection
o examine data, methods, and properties at runtime

e Reflection
o modify data, methods, and properties at runtime

A “property” is similar to a class data member

15

Where is Reflection Used

Sighals

Slots

Properties

Enums

Invokable Constructors
Ul Designer

16

What are Signals and Slots

e Signal

o notification something occurred

e Slot
o an ordinary method

e (Connection

o associates a Signal with a Slot
o when the Signal is emitted the Slot is called
o a given Signal can be connected to multiple Slots

17

What are Signals and Slots

e Boost Signals

o each signal is an object
o adding or removing a signal breaks ABI
o slots are called only on the emitting thread

18

How is a Signal Processed

e User presses a mouse button
e Mouse button event is processed
e Signal QPushButton::clicked() is emitted

e Qt4or Qt5 QPushButton::clicked()
o method is generated by moc, stored in a string table
o all passed parameters are cast to void *
o activate() is called with an array of void *

e CopperSpice QPushButton::clicked()

o method is created by a macro
o full parameter list with complete data types
o activate<Args...>() is called 9

Sample Moc Code

void QPushButton::clicked(bool _t1) {
void *_a[] = { Q_NULLPTR, const_cast<void*>(
reinterpret_cast<const void*>(& t1)) };
QMetaObject::activate(this, &staticMetaObject, 0, _a);

}
void QPushButton::qt_static_metacall(QObject *_o, QMetaObject::Call _c,
int _id, void ** _a)

{
if (_c == QMetaObject::InvokeMetaMethod) {

QPushButton *_t = static_cast<QPushButton *>(_o0);
Q_UNUSED(_t)
switch (_id) {
case 0: _t->clicked((*reinterpret_cast< bool*(*)>(_a[1]1)));
break;
default: ;

Reflection in CopperSpice

e Signal & Slot meta data must be registered

e At compile time, the registration process is
initialized by macros in your .h file

e At run time, the registration methods are called
automatically to set up the meta data

e Registration of class meta data occurs the first
time a specific class is accessed

21

Why is Registration Required

e When a Signal / Slot connection is made, you can
specify either method by name

e connectSlotsByName()
o called by generated code from the Ul Designer

o automatically connects Signals with Slots

e Plugins used in the Ul Designer

e Query any child of QObject for a list of methods or
properties belonging to the object

22

Declarations in your .h File

// signal & slot declarations

public:
CS_SIGNAL 1(Public, void clicked(bool status))
CS_SIGNAL _2(clicked,status)

CS_SLOT_1(Public, void showHelp())
CS_SLOT_2(showHelp)

23

Connections in your .cpp File

// 3 different ways to make the same connection
connect(myButton, “clicked(bool)”,
this, “showHelp()"”);

connect(myButton, &QPushButton::clicked,
this, &Ginger::showHelp);

connect(myButton, &QPushButton::clicked,
this, [this](){showHelp()});

24

Runtime Activation

e QObject::activate<Args...>()

O O O O

©)

template method
called every time a Signal is emitted
compares the Signal with the list of existing connections

when a match is found the associated Slot is called

multiple Slots can be connected to a given Signal
queued connections can cross threads

25

Techniques used to Implement Reflection

e Slot macro

o CS_SLOT_1(Public, void showHelp())
o CS_SLOT_2(showHelp)

counter is used to “chain” methods which
register the actual Slot meta data
template class wraps an integer value
method overloading

constexpr

decltype

26

e cs_register() will do something and then call the
“next cs_register” method

cs_register(0) {
cs_register(1);

}

cs_register(1) {
cs_register(2);

}

27

Implementation

e “zero” and “one” are integer values
e method overloading is based on data types
e create a class template to wrap the int value

cs_register(0) {
cs_register(1);

}

28

Template Class with an Integer Argument

template<int N>
class CSInt : public CSInt<N - 1> {
public:
static constexpr const int value = N;

}s

template<>
class CSInt<0> {
public:
static constexpr const int value

0;
}i

// inheritance relationship, “3” inherits from “2",
"2" inherits from “1”, and “1"” inherits from “0”

29

Class Ginger Expansion (after pre-processing)

class Ginger : public QObject
{

public:
template<int N>
static void cs_reglTrigger(CSInt<N>) { }

static constexpr CSInt<0> cs_counter(CSInt<0>);

// this code is expanded from a macro which is called
// at the beginning of your class

30

Example Class (after preprocessing)

// macro expansion from line 42 CS_TOKENPASTE2(value_, _ LINE_)
static constexpr const int value 42 =
decltype(cs_counter(CSInt<255>{}))::value;

static constexpr CSInt<value_42 + 1> cs_counter(CSInt<value 42 + 1>);
// additional code .

// macro expansion from line 43 CS_TOKENPASTE2(value_ , _ LINE_)
static constexpr const int value 43 =
decltype(cs_counter(CSInt<255>{}))::value;

static constexpr CSInt<value_43 + 1> cs_counter(CSInt<value 43 + 1>);
// additional code .

// what is value 42 ? what is value 43 ? 31

Macro SLOT Expansion (after pre-processing)

// macro expansion from line 42 CS_TOKENPASTE2(value_, _ LINE_)
volid showHelp();

static constexpr const int value 42 =
decltype(cs_counter(CSInt<255>{}))::value;

static constexpr CSInt<value 42 + 1> cs_counter(CSInt<value 42 + 1>);

static void cs_regTrigger(CSInt<value 42>)

{

cs_class::staticMetaObject().register_method(“showHelp",
&cs_class: :showHelp, QMetaMethod::Slot, "void showHelp()",
QMetaMethod: :Public);

cs_reglTrigger(CSInt<value_42 + 1>{});
}

32

Challenges with CopperSpice

e Registration process

@)

Signals, Slots, Properties, and Invokable methods

e Store method pointer for Signal & Slot methods
e Obtaining the values of an Enum

e Benefits to the CopperSpice Registration System

O

©)
O
O
O

clean syntax

improved static type checking

no lost data type information

no string table comparisons

no limit on parameter type or number of parameters

33

CopperSpice Work in Progress

e (S Container Classes

o thin wrappers around the STL C++11 containers
o we will maintain CS API

e Benefits
o reverse iterators, which have been missing
o QList has performance issues and the Qt dev team
recommends avoiding this container
o difficult to avoid QList since it is the return type for

many numerous methods
o many of the containers have exception safety problems 3«

Future Plans for CopperSpice

Use the C++11 threading library

Back port additional classes from Qt 5

Add support for smart pointers

Optimize QVariant

Investigate switching from WebKit to Chromium
Android support

Stand alone library containing Signals & Slots
Add cmake / ninja to our Cl system

35

How to contribute to CopperSpice

e Developers

o we welcome C++ enthusiasts who would like to
contribute to CopperSpice

o help us improve the documentation

e Using CopperSpice
o if your C++ application requires a GUl we encourage

you to use CopperSpice
o available now for Linux, OS X, and Windows

36

KitchenSink Application

Music Player
HTML Viewer
Font Selector
Standard Dialogs
XML Viewer
Calendar Widget
Sliders

Tabs

Analog Clock
And More. . .

37

Libraries & Applications

e CopperSpice
o Libraries for developing GUI applications
e PepperMill
o Converts old headers to CS standard C++ header files
e KitchenSink
o Over 30 CopperSpice demos in one application
e Diamond
o Programmers Editor which uses the CopperSpice
libraries
e DoxyPress & DoxyPressApp

O Documentation program, works with C++11
38

Where to find CopperSpice

® WWW.copperspice.com
e download.copperspice.com
e forum.copperspice.com

e ansel@copperspice.com
e barbara@copperspice.com

e Questions? Comments?

39

