
Containers and Strings
Why the Implementation

Matters

Barbara Geller & Ansel Sermersheim
CppNow - May 2017

1

Introduction

● Overview / Biography
● String terminology
● How other libraries handle Strings
● CsString to the rescue
● CsString integrated with CopperSpice
● DoxyPress improved String handling

2

Overview / Biography

● CopperSpice
● DoxyPress
● CsSignal library
● libGuarded library
● CsString library you are here

3

Overview / Biography

● CopperSpice
○ initial release - May 2014
○ run time counter registration

■ replaces moc and improves introspection
■ allows reflections of templated classes

○ build system - autotools or cmake
○ improved the signal / slot system
○ contains a set of String classes inherited from Qt

■ QString, QByteArray, QLatin1String, QChar

4

Overview / Biography

● CopperSpice - Documentation
○ DoxyPress was used to generate all CS documentation

■ improved readability and accuracy
■ full API documentation with class diagrams
■ overview documentation

● build instructions
● how to migrate from Qt
● setting up a CS project
● CS development timeline

5

Overview / Biography

● CopperSpice - Containers
○ implementation matters more in library design
○ the mistakes may need to be supported
○ a redesign can be painful for the library developers

and the users

● Example
○ all of the containers inherited by CS were custom classes
○ implementing containers by hand requires an enormous

amount of continuous maintenance
■ move semantics
■ variadic templates
■ ranges?

6

Overview / Biography

● CopperSpice - Containers
○ removed legacy sequential containers, reimplemented

using the STL containers
○ chose composition instead of inheritance
○ easy to add full support for move semantics
○ maintained and extended the CopperSpice API
○ added support for the STL API

■ append() vs push_back()
■ isEmpty() vs empty()

7

Overview / Biography

● CopperSpice - Containers
○ QList extremely inefficient and error prone
○ recommended by Qt developers to avoid, use QVector
○ QVector and QList implementation used “copy on write”

○ as of CopperSpice 1.4.0
■ QVector uses std:vector
■ QList uses std::deque

// qregion.cpp, oldRects is never used anywhere
// undocumented, looks like dead code
QVector<QRect> oldRects = dest.rects;

8

Overview / Biography

● DoxyPress
○ initial release - November 2015
○ documentation tool
○ various output formats are available
○ option to parse C++ source code using clang
○ written in C++
○ uses the CopperSpice String classes
○ processes a great deal of text

9

Overview / Biography

● Diamond
○ programmers editor
○ written in C++
○ uses the CopperSpice String classes
○ processes a great deal of text

10

Overview / Biography

● CopperSpice
○ CsSignal library

■ initial release May 2016
■ uses libGuarded library
■ fully integrated with CopperSpice

○ CsString library
■ initial release May 2017
■ partially integrated with CopperSpice

11

String Terminology

● Part II

12

String Terminology

● Character Set
○ collection of symbols
○ the set does not associate any values to these symbols
○ unordered list

○ Examples

■ Latin character set is used in English and most
European languages

■ Greek character set is used only by the
Greek language

13

String Terminology

● Character Encoding
○ the values associated with a character set
○ confusing terminology
○ better term is Character Map

14

String Terminology

● Coded Character Set
○ combination of a character set and a character map

○ Example

■ ASCII is a coded character set

■ ISO-8859-1 is a coded character set
● latin script, used extensively in western Europe

■ KOI8-R is a coded character set
● cyrillic script, used extensively in Russia

15

String Terminology

● Code Point or Code Position
○ character encoding terminology which refers to the

numerical values defined by the Unicode standard
○ code points and characters are not the same
○ working with strings you need to think in terms of

code points and not characters

○ atomic unit of text
○ 32-bit integer data type
○ lower 21-bits represent a valid code point and the

upper 11-bits are zero

16

String Terminology

● Code unit or Storage unit
○ describes the unit of storage for an encoded code point
○ in UTF-8 the code unit is 8-bits
○ in UTF-16 the code unit is 16-bits

● Basic Multilingual Plane (BMP)
○ first 64k code points in Unicode
○ set of characters which fit into 2 bytes in UTF-16
○ contains characters for almost all modern languages

and a large number of symbols

17

String Terminology

● ASCII
○ 7-bit coded character set finalized in 1968
○ 128 characters from 00 to 7F which match the

corresponding Unicode code points

○ ASCII is often incorrectly used to refer to various 8-bit
coded character sets which just happen to include the
ASCII characters in the first 128 code points

18

String Terminology

● Latin-1
○ Latin Alphabet Number 1, also known as ISO-8859-1
○ 8-bit coded character set published in 1987
○ 191 characters from the Latin script
○ later used in the first 256 code points of Unicode
○ Latin-1 is a superset of the ASCII standard
○ used in the US, Western Europe, much of Africa

○ many other ISO Latin character sets which support Central
Europe, Greek, Hebrew, and other languages

19

What is Character Encoding

● Example: latin capital letter A
○ symbol A code point value of U+0041
○ UTF-8 this is represented by one byte
○ UTF-16 this is represented by two bytes
○ one code point, one storage unit in either character encoding

● Example: rightwards arrow with corner downwards
○ symbol ↴ code point value of U+21B4
○ UTF-8 this is represented by three bytes, three storage units
○ UTF-16 this is represented by two bytes, one storage unit
○ always one code point, variable number of storage units

20

What is Character Encoding

● Example: musical symbol eighth note
○ symbol ♪ code point value of U+1d160
○ UTF-8 this is represented by four bytes, four storage units
○ UTF-16 this is represented by four bytes, two storage units
○ always one code point, variable number of storage units
○ outside the BMP

21

What is Unicode

● Unicode code points are by definition 32-bits
○ working with Unicode code points there is no choice,

everything is a 32-bit value
○ Unicode Consortium realized the majority of the romance

languages use the Latin alphabet and most of these symbols
can be represented using 8-bits

○ the remainder of the symbols need 16-bits or 32-bits
○ it did not make sense to expect everyone to use a 32-bit

character encoding when most text can be represented in
8-bits or 16-bits

22

What is Unicode

● UTF-8
○ variable length encoding
○ better encoding since there are numerous code points which

only require one byte instead of two bytes in UTF-16
○ since the storage units are individual bytes there is no

concept of big-endian versus little-endian

○ implementing UTF-8 requires a mechanism to calculate
how many bytes comprise a single code point

○ this process is simpler than in UTF-16

23

What is Unicode

● UTF-16
○ variable length encoding
○ it is misleading to say Unicode can be represented in a

16-bit format
○ creates a lot of confusion and rarely implemented correctly

○ implementing UTF-16 requires a mechanism to calculate
how many bytes comprise a single code point

○ more difficult to test for correctness
○ poor choice for encoding since it is both too narrow for

many code points and too wide for the basic Latin
character set

24

What is Unicode

● Companies like Microsoft may have selected a text encoding
without really thinking things through, they elected to adopt
UTF-16 as the native encoding for Unicode on Windows

● Languages like Java and Qt followed suit

● The 16-bit encoding seemed attractive and the correct choice
at that time

● Languages, operating systems, and application developers
learned from the struggles of existing string implementations
and realized UTF-8 was the better option

25

Most Important Fact about Encodings

● Quote from “Joel On Software” in 2003
○ “It does not make sense to have a string without knowing

what encoding it uses. You can no longer stick your head in
the sand and pretend that ‘plain’ text is ASCII.”

○ strings many not be dazzling or feel cutting edge but they
are a major part of nearly every application

○ you really need to know what encoding an email is in
or you simply can not interpret or display it correctly

○ searching can be impossible if you are unable to
decipher a string correctly

26

Unicode Timeline

● 1991
○ release UCS-2, 16-bit storage (2 bytes, fixed width)

● 1992
○ MFC Version 1.0 release

■ CString uses UCS-2
■ Microsoft moved to UTF-16 with Windows XP

● 1993
○ release UCS-4, 32-bit storage (4 bytes, fixed width)

● 1995
○ Java version 1.0 string class uses UCS-2

27

Unicode Timeline

● 1996
○ release UTF-8 (1-4 bytes, variable width)
○ release UTF-16 (2 or 4 bytes, variable width)

● 1999
○ TrollTech releases Qt 2.0

■ QString is the native string class, uses UTF-16
■ characters above 64k are stored using two 16-bit

QChars which the user must “glue” together

● 2001
○ release UTF-32

28

Unicode Timeline

● 2005
○ Java Version 5.0 string class uses UTF-16

● 2017
○ release CsString

■ full Unicode aware string library
■ support for UTF-8 and UTF-16
■ additional encodings can smoothly and easily be added

29

How other libraries handle Strings

● Part III

30

How other libraries handle Strings

● What prompted development of CopperSpice
○ where Qt could be improved

■ build systems
■ templates
■ atomics
■ containers
■ signals / slots
■ threading
■ modern C++
■ unicode strings you are here

31

How other libraries handle Strings

● What prompted development of DoxyPress
○ where Doxygen could be improved

■ templates
■ containers
■ readable, maintainable, modular
■ modern C++
■ unicode strings you are here

32

How other libraries handle Strings

● What STL does not support
○ std::string

■ uses 8-bit storage
■ no mechanism to specify encoding

○ std::wstring
■ uses 16-bit or 32-bit storage
■ no mechanism to specify encoding

○ unicode strings you are here

33

How other libraries handle Strings

● What prompted development of CsString
○ Unicode

■ ASCII, Latin-1, UCS-2, UCS-4, UTF-8, UTF-16, UTF-32

○ MFC
■ UCS-2, UTF-16

○ Java
■ UCS-2, UTF-16

○ std::string
■ no encoding

○ QString
■ UTF-16

○ C#
■ UTF-16

34

How other libraries handle Strings

● DoxyPress
○ original code for text processing

■ used Qt 1.9 QCString, QGString, or const char *
■ QCString and QGString used 8-bit storage, no encoding
■ both string classes roughly equivalent to std::string,

they have an implicit conversion to char *

○ refactored every QCString and QGString to use a
CopperSpice QString (UTF-16)

35

How other libraries handle Strings

● DoxyPress - Problem 1

○ QCString returns a null character when accessing past
the end of the string

○ switching to QString resulted in many run time crashes,
debugging was a nightmare

36

How other libraries handle Strings

● DoxyPress - Problem 2

QString text = “List of Overloaded Public and Protected Methods”;
m1(text.toUtf8().constData());

void m1(const char * data) {
m2(data);

}

void m2(const QString & phrase) {
printOut(phrase);

}

37

How other libraries handle Strings

● DoxyPress - Problem 2
○ “List of Overloaded Public and Protected Methods”

○ German
Liste der überladenen öffentlichen und geschützten Methoden
?

○ Russian
Список перегруженных общедоступных и защищенных методов
?

38

How other libraries handle Strings

● DoxyPress - Problem 2
○ “List of Overloaded Public and Protected Methods”

○ German
Liste der überladenen öffentlichen und geschützten Methoden
Liste der Ã�Â¼berladenen Ã�Â¶ffentlichen und geschÃ�Â¼tzten
Methoden

○ Russian
Список перегруженных общедоступных и защищенных методов
Ð¡Ð¿Ð¸Ñ�Ð¾Ðº Ð¿ÐµÑ�ÐµÐ³Ñ�Ñ�Ð¶ÐµÐ½Ð½Ñ�Ñ
 Ð¾Ð±Ñ�ÐµÐ´Ð¾Ñ�Ñ�Ñ�Ð¿Ð½Ñ�Ñ
 Ð¸ Ð·Ð°Ñ�Ð¸Ñ�ÐµÐ½Ð½Ñ�Ñ
 Ð¼ÐµÑ�Ð¾Ð´Ð¾Ð² 39

How other libraries handle Strings

● DoxyPress - Problem 2

QString text = “List of Overloaded Public and Protected Methods”;
m1(text.toUtf8().constData());

void m1(const char * data) {
// data points to a UTF-8 encoded string, but does not know it
m2(data);

}

void m2(const QString & phrase) {
// QString(const char *) constructor assumes Latin-1
printOut(phrase);

}

● Any text would be corrupted if it contains code points past 7F

40

CsString to the Rescue

● Part IV

41

CsString to the Rescue

● What should we retain?
○ 8-bit storage is more useful and versatile than 16 bit

● What should we change?
○ add a way to specify an encoding format
○ encoding format needs to adhere to Unicode
○ provide a mechanism to add a new encoding format without

having to change the base string class

42

CsString to the Rescue

● CsBasicString
○ foundation class
○ templated class <typename E, typename A>

■ encoding
■ allocator

○ consists of a sequence of code points where each one
is represented by a single 32-bit CsChar

○ implements a safe subset of std::string methods
○ supports conversion between existing encodings

43

CsString to the Rescue

● CsBasicString
○ commonly used instantiations

using CsString = CsBasicString<utf8>;
using CsString_utf8 = CsBasicString<utf8>;
using CsString_utf16 = CsBasicString<utf16>;

44

CsString to the Rescue

● What is a String?
○ const char *
○ std::string
○ std::wstring
○ std::vector<char>
○ boost::string_ref
○ quoted text
○ quoted string
○ string literal
○ array of characters

45

CsString to the Rescue

● What data types do you see?

○ Example 1
■ const char * str1 = “abc”;
■ CsString str2 = str1;

○ Example 2
■ CsString str3 = “abc”;

46

CsString to the Rescue

● What data types do you see?
○ (Ex 1) const char * str1 = “abc”;

■ C Style String, initialized with a string literal
○ CsString str2 = str1;

■ unsafe

○ (Ex 2) CsString str3 = “abc”;
■ CsString, initialized with a string literal

○ a string literal is an expression
○ the data type for “abc” is “array of 4 chars”

47

CsString to the Rescue

● Implementation
○ CsString, initialized with a C style String
○ CsString, initialized with a string literal

template <typename T,
 typename = typename std::enable_if<
 std::is_same<T, const char *>::value ||
 std::is_same<T, char *>::value>::type>
CsBasicString(const T &str);

template <int N>
CsBasicString(const char (&str)[N]);

48

CsString to the Rescue

● API requirement for CsString
○ a string library should seamlessly support string literals
○ CsString must provide constructors and methods like

operator!= and operator+= which take a string literal

CsString str(“xyz”);

if (str != “abc”) {
return false;

}

str += “123”;

49

CsString to the Rescue

● Another type of string literal
○ how do you construct a string with non ASCII characters?

// sample code
CsString data(U"ABCD↴");

// constructor
CsBasicString(const char32_t * str);

50

CsString to the Rescue

● Another type of string literal

○ UTF-8 string literal (unsupported, has consequences)

■ u8"ABCD↴"
■ const char[]

○ UTF-16 string literal (unsupported, may implement)

■ u"ABCD↴"
■ const char16_t[]

○ UTF-32 string literal (currently supported)

■ U"ABCD↴"
■ const char32_t[]

51

CsString to the Rescue

● Passing a multi-byte string literal
○ not safe at present, code produces a warning
○ data assumed to be Latin-1, which clearly may not be true
○ alternative implementations are under consideration

// sample code
CsString data("↴");

// output
code points in data : e2 86 b4
contents of data : â�´ (mangled, 86 is non printable)

52

CsString to the Rescue

● Design of CsBasicString
○ has a private container which stores the data
○ currently using std::vector

■ (future) implement small_vector for efficiency

● CsBasicString<utf8>
○ utf8 is a data type which implements the UTF-8 encoding

● CsBasicString<utf16>
○ utf16 is a data type which implements the UTF-16 encoding

53

CsString to the Rescue

● Design of CsBasicString<utf8>
○ std::vector contains the raw UTF-8 data
○ m_string is the private data member
○ m_string.begin() and m_string.end() are std::vector iterators
○ these iterators and the data for m_string are private

● Accessing the data
○ since the values in m_string represent code points how do

you walk through the vector, only seeing whole code points
○ how do you expose iterators to a CsBasicString

54

CsString to the Rescue

● Design of CsBasicString<utf8>

55

A B C ↴ \0

std::vector 0 1 2 3 4 5 6 7

CsString 0 1 2 3 x y 4

CsString to the Rescue

● Encoding.h
class utf8 {
 public:
 using storage_unit = uint8_t;

 template <typename Container>
static typename Container::const_iterator insert(...)

 static int walk(...)

 static CsChar getCodePoint(...)

 private:
 static int numOfBytes(...)
}

56

CsString to the Rescue

 template <typename Container>
 static typename Container::const_iterator insert(Container &str1,
 typename Container::const_iterator iter, CsChar c, int count = 1) {

 uint32_t value = c.unicode();

 for (int x = 0; x < size; ++x) {
 if (value <= 0x007F) {
 iter = str1.insert(iter, value);

 } else if (value <= 0x07FF) {
 iter = str1.insert(iter, ((value) & 0x3F) | 0x80);
 iter = str1.insert(iter, ((value >> 6) & 0x1F) | 0xC0);
 }

 (continued . . .)
57

CsString to the Rescue

 } else if (value <= 0xFFFF) {
 iter = str1.insert(iter, ((value) & 0x3F) | 0x80);
 iter = str1.insert(iter, ((value >> 6) & 0x3F) | 0x80);
 iter = str1.insert(iter, ((value >> 12) & 0x0F) | 0xE0);

 } else {
 iter = str1.insert(iter, ((value) & 0x3F) | 0x80);
 iter = str1.insert(iter, ((value >> 6) & 0x3F) | 0x80);
 iter = str1.insert(iter, ((value >> 12) & 0x3F) | 0x80);
 iter = str1.insert(iter, ((value >> 18) & 0x07) | 0xF0);
 }
 }

 return iter;
}

58

CsString to the Rescue

● Testing
○ twelve usage tests containing 85 test points
○ included with CsString, test folder
○ human readable output

○ unit test containing 1200 test points
○ development testing
○ every test performed on UTF-8 and UTF-16
○ all tests are validated against std::string, when possible

59

CsString Testing

● Unit Test 6

CsString::CsString str1(“Ending character is 3 bytes”);
str1.append(UCHAR(‘↴’));

Insert 2 left arrows at the 7th character
Ending↵↵ character is 3 bytes ↴

Insert string literal at the 7th character
Ending [string literal] ↵↵ character is 3 bytes ↴

Replace string literal at the 7th character
Ending { new string text } character is 3 bytes ↴

60

CsString Testing

● Unit Test 7

Original String: ABCD↴¿E♪F

Walk backwards: F
Walk backwards: ♪
Walk backwards: E
Walk backwards: ¿
Walk backwards: ↴
Walk backwards: D
Walk backwards: C
Walk backwards: B
Walk backwards: A

Note: musical symbol 8th note is U+1D160, outside BMP 61

CsString Testing

● Unit Test 7

Original String: ABCD↴¿E♪F
Substring beginning at 3, length 4: D↴¿E

Erase A element: BCD↴¿E♪F
Erase B element: CD↴¿E♪F
Erase C element: D↴¿E♪F
Erase D element: ↴¿E♪F
Erase ↴ element: ¿E♪F
Erase ¿ element: E♪F
Erase E element: ♪F
Erase ♪ element: F
Erase F element:

62

CsString Testing

● Unit Test 8

Original String (↴ is 3 bytes): ABCD↴

String - size_storage() : 7
String - size_codePoints() : 5
String - size() : 5
String - length() : 5

Copy original string from begin() + 2 : CD↴
Substring beginning at 3, length 2 : D↴

63

CsString integrated with CopperSpice

● Part V

64

CsString integrated with CopperSpice

● QString
○ current string class is UTF-16
○ does not fully support code points outside the BMP

● QString8
○ beta release CopperSpice 1.4.1 (released May 1 2017)
○ production release CopperSpice 1.5.0

● QString16
○ pending

65

CsString integrated with CopperSpice

● QString8 enhancements
○ arg()

■ similar to printf()
■ around 20 different versions
■ refactor using variadic templates

○ remove QLatin1String
■ wrapper for a const char *
■ unnecessary since CsString can decipher between a

C style string and a string literal

66

DoxyPress improved String handling

● Part VI

67

DoxyPress improved String handling

● Resolved issue
○ during usage testing we discovered ↴ was not

appearing in the html output
○ lex rules were matching a single byte at a time
○ required another rule to decipher when a byte was

part of multi-byte code point
○ issue discovered in multiple places

68

DoxyPress improved String handling

● Switching from QString to QString8
○ will reduce memory usage by 50%
○ continuous conversions between UTF-16 and UTF-8

■ const char * result = data.toUtf8().constData();

69

Putting it all Together

● What is next?

70

Putting it all Together

● Piece by piece
○ developing CopperSpice proved we needed to design a

standalone Signal / Slot library (CsSignal)
○ deadlocks in CsSignal demanded a threading library
○ unable to document CopperSpice we created DoxyPress

and switched parsing from lex to clang for C++
○ mangled text required a Unicode aware string library

○ CsSignal uses libGuarded
○ CopperSpice uses CsSignal and CsString
○ DoxyPress uses CopperSpice

71

Future Plans

● CsString
○ add ISO-8859-1 encoding (maybe others)
○ implement small string optimization
○ add locale aware comparison using Unicode algorithms
○ add normalization functions

● libGuarded
○ associative containers
○ lock free containers

72

Future Plans

● CopperSpice
○ complete QString8 and QString16
○ redesign QMap and QHash leveraging STL containers
○ optimize QVariant
○ lambda based indexOf and lastIndexOf, all container classes
○ MSVC using clang front end, if possible

● CsSignal
○ improve move semantics

73

Future Plans

● DoxyPress
○ add parsing support for clang 3.8 and clang 3.9
○ optimize clang integration used in parsing
○ refactor comment parser
○ improve unicode support

74

Libraries & Applications

● CopperSpice
○ libraries for developing GUI applications

● PepperMill
○ converts Qt headers to CS standard C++ header files

● CsSignal Library
○ thread aware signal / slot library

● CsString Library
○ unicode aware string support library

● LibGuarded
○ multithreading library for shared data

75

Libraries & Applications

● KitchenSink
○ one program which contains 30 demos
○ links with almost every CopperSpice library

● Diamond
○ programmers editor which uses the CS libraries

● DoxyPress & DoxyPressApp
○ application for generating documentation for a variety of

computer languages in numerous output formats

76

Where to find our libraries

● www.copperspice.com
● download.copperspice.com
● forum.copperspice.com

● ansel@copperspice.com
● barbara@copperspice.com

● Questions? Comments?

77

