Containers and Strings
Why the Implementation
Matters

Barbara Geller & Ansel Sermersheim
CppNow - May 2017




Introduction

Overview / Biography

String terminology

How other libraries handle Strings
CsString to the rescue

CsString integrated with CopperSpice
DoxyPress improved String handling



Overview / Biography

CopperSpice
DoxyPress
CsSignal library
libGuarded library

CsString library <= vyou are here



Overview / Biography

e CopperSpice

o 1initial release - May 2014

o run time counter registration
m replaces moc and improves introspection
m allows reflections of templated classes

o build system - autotools or cmake

o improved the signal / slot system

o contains a set of String classes inherited from Qt
m QString, QByteArray, QLatin1String, QChar



Overview / Biography

e CopperSpice - Documentation
o DoxyPress was used to generate all CS documentation
m improved readability and accuracy
m full APl documentation with class diagrams
m overview documentation
build instructions
how to migrate from Qt
setting up a CS project
CS development timeline



Overview / Biography

e CopperSpice - Containers
o implementation matters more in library design
o the mistakes may need to be supported
o a redesign can be painful for the library developers
and the users

e Example
o all of the containers inherited by CS were custom classes
o implementing containers by hand requires an enormous
amount of continuous maintenance
m move semantics
m variadic templates
m ranges?



Overview / Biography

e CopperSpice - Containers
o removed legacy sequential containers, reimplemented
using the STL containers
chose composition instead of inheritance
easy to add full support for move semantics
maintained and extended the CopperSpice API
added support for the STL API
m append() vs push_back()
m isEmpty() vs empty()

O O O O



Overview / Biography

e CopperSpice - Containers
o QList extremely inefficient and error prone
o recommended by Qt developers to avoid, use QVector
o QVector and QList implementation used “copy on write”

o as of CopperSpice 1.4.0
m QVector uses std:vector
m QList uses std::deque

// qregion.cpp, oldRects is never used anywhere
// undocumented, looks like dead code
QVector<QRect> oldRects = dest.rects;



Overview / Biography

e DoxyPress

O

O O O O O O

initial release - November 2015
documentation tool

various output formats are available

option to parse C++ source code using clang
written in C++

uses the CopperSpice String classes
processes a great deal of text



Overview / Biography

e Diamond
o programmers editor
o written in C++
o uses the CopperSpice String classes
o processes a great deal of text

10



Overview / Biography

e CopperSpice
o (CsSignal library
m initial release May 2016
m uses libGuarded library
m fully integrated with CopperSpice

o (CsString library
m initial release May 2017
m partially integrated with CopperSpice

11



String Terminology

e Partll

12



String Terminology

e Character Set

o collection of symbols
o the set does not associate any values to these symbols
o unordered list

o Examples

m Latin character set is used in English and most
European languages

m Greek character set is used only by the
Greek language

13



String Terminology

e (Character Encoding

o the values associated with a character set
o confusing terminology
o better term is Character Map

14



String Terminology

e (Coded Character Set

o combination of a character set and a character map

o Example
m ASCIl is a coded character set

m [150-8859-1 is a coded character set
e latin script, used extensively in western Europe

m KOI8-R is a coded character set
e cyrillic script, used extensively in Russia

15



String Terminology

e Code Point or Code Position
o character encoding terminology which refers to the
numerical values defined by the Unicode standard
o code points and characters are not the same
o working with strings you need to think in terms of
code points and not characters

o atomic unit of text

o 32-bit integer data type

o lower 21-bits represent a valid code point and the
upper 11-bits are zero

16



String Terminology

e (Code unit or Storage unit

O
O
O

describes the unit of storage for an encoded code point
in UTF-8 the code unit is 8-bits
in UTF-16 the code unit is 16-bits

e Basic Multilingual Plane (BMP)

O
O
O

first 64k code points in Unicode

set of characters which fit into 2 bytes in UTF-16
contains characters for almost all modern languages
and a large number of symbols

17



String Terminology

o ASCII

o 7-bit coded character set finalized in 1968
o 128 characters from 00 to 7F which match the
corresponding Unicode code points

o ASCIl is often incorrectly used to refer to various 8-bit

coded character sets which just happen to include the
ASCII characters in the first 128 code points

18



String Terminology

e Latin-1

o Latin Alphabet Number 1, also known as 1SO-8859-1
8-bit coded character set published in 1987
191 characters from the Latin script
later used in the first 256 code points of Unicode
Latin-1 is a superset of the ASCII standard
used in the US, Western Europe, much of Africa

O O O O O

o many other ISO Latin character sets which support Central
Europe, Greek, Hebrew, and other languages

19



What is Character Encoding

e Example: latin capital letter A

O

O
O
O

symbol A code point value of U+0041

UTF-8 this is represented by one byte

UTF-16 this is represented by two bytes

one code point, one storage unit in either character encoding

e Example: rightwards arrow with corner downwards

O

O
O
O

symbol ' code point value of U+21B4

UTF-8 this is represented by three bytes, three storage units
UTF-16 this is represented by two bytes, one storage unit
always one code point, variable number of storage units

20



What is Character Encoding

e Example: musical symbol eighth note

o symbol J' code point value of U+1d160

UTF-8 this is represented by four bytes, four storage units
UTF-16 this is represented by four bytes, two storage units
always one code point, variable number of storage units
outside the BMP

O O O O

21



What is Unicode

e Unicode code points are by definition 32-bits

o working with Unicode code points there is no choice,
everything is a 32-bit value

o Unicode Consortium realized the majority of the romance
languages use the Latin alphabet and most of these symbols
can be represented using 8-bits

o the remainder of the symbols need 16-bits or 32-bits

o it did not make sense to expect everyone to use a 32-bit

character encoding when most text can be represented in
8-bits or 16-bits

22



What is Unicode

o UTF-8

O
O

variable length encoding

better encoding since there are numerous code points which
only require one byte instead of two bytes in UTF-16

since the storage units are individual bytes there is no
concept of big-endian versus little-endian

implementing UTF-8 requires a mechanism to calculate

how many bytes comprise a single code point
this process is simpler than in UTF-16

23



What is Unicode

o UTF-16

o variable length encoding

o it is misleading to say Unicode can be represented in a
16-bit format

o creates a lot of confusion and rarely implemented correctly

o implementing UTF-16 requires a mechanism to calculate
how many bytes comprise a single code point

o more difficult to test for correctness

o poor choice for encoding since it is both too narrow for
many code points and too wide for the basic Latin
character set

24



What is Unicode

e Companies like Microsoft may have selected a text encoding
without really thinking things through, they elected to adopt
UTF-16 as the native encoding for Unicode on Windows

e Languages like Java and Qt followed suit

e The 16-bit encoding seemed attractive and the correct choice
at that time

e Languages, operating systems, and application developers
learned from the struggles of existing string implementations
and realized UTF-8 was the better option

25



Most Important Fact about Encodings

e Quote from “Joel On Software” in 2003

o “It does not make sense to have a string without knowing
what encoding it uses. You can no longer stick your head in
the sand and pretend that ‘plain’ text is ASCII.”

o strings many not be dazzling or feel cutting edge but they
are a major part of nearly every application

o you really need to know what encoding an email is in
or you simply can not interpret or display it correctly

o searching can be impossible if you are unable to
decipher a string correctly

26



Unicode Timeline

o 1991
o release UCS-2, 16-bit storage (2 bytes, fixed width)

e 1992
o MFC Version 1.0 release
m (CString uses UCS-2
m Microsoft moved to UTF-16 with Windows XP

o 1993
o release UCS-4, 32-bit storage (4 bytes, fixed width)

e 1995
o Java version 1.0 string class uses UCS-2

27



Unicode Timeline

o 1996
o release UTF-8 (1-4 bytes, variable width)
o release UTF-16 (2 or 4 bytes, variable width)

e 1999
o TrollTech releases Qt 2.0
m QString is the native string class, uses UTF-16
m characters above 64k are stored using two 16-bit
QChars which the user must “glue” together

o 2001
o release UTF-32

28



Unicode Timeline

o 2005
o Java Version 5.0 string class uses UTF-16

o 2017
o release CsString
m full Unicode aware string library
m support for UTF-8 and UTF-16
m additional encodings can smoothly and easily be added

29



How other libraries handle Strings

e Part Il

30



How other libraries handle Strings

e What prompted development of CopperSpice
o where Qt could be improved
m build systems
templates
atomics
containers
signals / slots
threading
modern C++
unicode strings &= vyou are here

31



How other libraries handle Strings

e What prompted development of DoxyPress

o where Doxygen could be improved
m templates

m containers

m readable, maintainable, modular

m modern C++

m unicode strings &= vyou are here

32



How other libraries handle Strings

e What STL does not support
o std::string
m uses 8-bit storage
m no mechanism to specify encoding

o std::wstring
m uses 16-bit or 32-bit storage
m no mechanism to specify encoding

o unicode strings &= you are here

33



How other libraries handle Strings

e What prompted development of CsString

o Unicode
m ASCIl, Latin-1, UCS-2, UCS-4, UTF-8, UTF-16, UTF-32

o MFC
m UCS-2, UTF-16

o Java

m UCS-2, UTF-16
o std::string

m Nno encoding

o QString
m UTF-16

o C#
m UTF-16

34



How other libraries handle Strings

e DoxyPress
o original code for text processing
m used Qt 1.9 QCString, QGString, or const char *
m QCString and QGString used 8-bit storage, no encoding
m both string classes roughly equivalent to std::string,
they have an implicit conversion to char *

o refactored every QCString and QGString to use a
CopperSpice QString (UTF-16)

35



How other libraries handle Strings

e DoxyPress - Problem 1

o QCString returns a null character when accessing past
the end of the string

o switching to QString resulted in many run time crashes,
debugging was a nightmare

36



How other libraries handle Strings

e DoxyPress - Problem 2

QString text = "“List of Overloaded Public and Protected Methods”;
m1(text.toUtf8().constData());

void ml1(const char * data) {
m2(data);

}

void m2(const QString & phrase) {
printOut(phrase);

}

37



How other libraries handle Strings

e DoxyPress - Problem 2
o “List of Overloaded Public and Protected Methods”

o German
Liste der uberladenen offentlichen und geschutzten Methoden
?

o Russian
CnUCOK neperpyXeHHbIX 0oLWeA0CTYMHbIX U 3alMLLEHHbBIX METO0B
?

38



How other libraries handle Strings

e DoxyPress - Problem 2
o ‘“List of Overloaded Public and Protected Methods”

o German
Liste der uberladenen offentlichen und geschutzten Methoden

Liste der AuAYberladenen AoAfffentlichen und geschAoAtzten
Methoden

o Russian
CnUCOK neperpyXeHHbIX 0oLWeA0CTYMHbIX U 3alMLLEHHbBIX METO0B
D;D;D NoD34D° D;PuNoDuD3NaNoD Db 2D Y2NaN
D¥%4D+NoDpD “D34NeoNoNeD;DY2NoN
D D-D°NoD NoDbub¥:D%NoN
DY4DuNoD¥%4D "D34D? 39



How other libraries handle Strings

e DoxyPress - Problem 2

QString text = "“List of Overloaded Public and Protected Methods”;
m1(text.toUtf8().constData());

void m1(const char * data) {

// data points to a UTF-8 encoded string, but does not know 1t
m2(data);

}

void m2(const QString & phrase) {
// QString(const char *) constructor assumes Latin-1
printOut(phrase);

}
e Any text would be corrupted if it contains code points past 7F

40



CsString to the Rescue

e PartlV

41



CsString to the Rescue

e What should we retain?
o 8-bit storage is more useful and versatile than 16 bit

e What should we change?
o add a way to specify an encoding format
o encoding format needs to adhere to Unicode
o provide a mechanism to add a new encoding format without
having to change the base string class

42



CsString to the Rescue

e (sBasicString
o foundation class
o templated class <typename E, typename A>
m encoding
m allocator

o consists of a sequence of code points where each one
is represented by a single 32-bit CsChar

o implements a safe subset of std::string methods

o supports conversion between existing encodings

43



CsString to the Rescue

e (sBasicString
o commonly used instantiations

using CsString = CsBasicString<utf8>;
using CsString_utf8 = CsBasicString<utf8>;
using CsString utf16 = CsBasicString<utf16>;

44



CsString to the Rescue

e What is a String?

o const char *
std::string
std::wstring
std::vector<char>
boost::string_ref
quoted text
quoted string
string literal

array of characters

O O O O O O O O

45



CsString to the Rescue

e What data types do you see?

o Example 1
m const char * str1 = “abc”;
m (CsString str2 = stri;

o Example 2
m CsString str3 = “abc”;

46



CsString to the Rescue

e What data types do you see?

o (Ex 1) const char * str1 = “abc”;

m C Style String, initialized with a string literal
o (CsString str2 = stri;

m unsafe

o (Ex 2) CsString str3 = “abc”;
m (sString, initialized with a string literal

o a string literal is an expression
o the data type for “abc” is “array of 4 chars”

47



CsString to the Rescue

e Implementation
o (sString, initialized with a C style String

o (sString, initialized with a string literal

template <typename T,
typename = typename std::enable_if<
std: :1s_same<T, const char *>::value ||
std::1s_same<T, char *>::.value>::type>
CsBasicString(const T &str);

template <int N>
CsBasicString(const char (&str)[N]);

48



CsString to the Rescue

e API requirement for CsString
o a string library should seamlessly support string literals
o (CsString must provide constructors and methods like
operator!= and operator+= which take a string literal

CsString str(“xyz");

if (str != "abc”) {
return false;

}

str += "123",;

49



CsString to the Rescue

e Another type of string literal

o how do you construct a string with non ASCIl characters?

// sample code
CsString data(U"ABCD");

// constructor
CsBasicString(const char32_t * str);

50



CsString to the Rescue

e Another type of string literal

o UTF-8 string literal  (unsupported, has consequences)
m u8"ABCD"
m const char(]

o UTF-16 string literal (unsupported, may implement)
m U'ABCD!”
m const char16_t[]

o UTF-32 string literal (currently supported)
m U'ABCD "
m const char32_t[]

51



CsString to the Rescue

e Passing a multi-byte string literal
o not safe at present, code produces a warning
o data assumed to be Latin-1, which clearly may not be true
o alternative implementations are under consideration

// sample code
CsString data("i");

// output
code points 1n data : e2 86 b4

contents of data coat’ (mangled, 86 is non printable)

52



CsString to the Rescue

e Design of CsBasicString

o has a private container which stores the data
o currently using std::vector
m (future) implement small_vector for efficiency

e (sBasicString<utf8>
o utf8 is a data type which implements the UTF-8 encoding

e (sBasicString<utf16>
o utf16 is a data type which implements the UTF-16 encoding

53



CsString to the Rescue

e Design of CsBasicString<utf8>
o std::vector contains the raw UTF-8 data
o m_string is the private data member

o m_string.begin() and m_string.end() are std::vector iterators
o these iterators and the data for m_string are private

e Accessing the data

o since the values in m_string represent code points how do
you walk through the vector, only seeing whole code points
o how do you expose iterators to a CsBasicString

54



CsString to the Rescue

e Design of CsBasicString<utf8>

std::vector 0 1 2 3 4 5 6 7
CsString 0 1 2 3 X y 4

55



CsString to the Rescue

e Encoding.h
class utf8 {
public:

using storage_unit = uint8_t;

template <typename Container>

static typename Container::const_iterator insert( ... )
static int walk( ... )
static CsChar getCodePoint( ... )
private:
static int numOfBytes( ... )

56



CsString to the Rescue

template <typename Container>
static typename Container::const_iterator insert( Container &str1,
typename Container::const_iterator iter, CsChar c, int count = 1) {

uint32_t value = c.unicode();
for (int x = 0; X < size; ++x) {
if (value <= 0x007F) {

iter = stril1.insert(iter, value);

} else if (value <= OxO07FF) {

iter = stril.insert(iter, ((value) & Ox3F) | 0x80);

iter = stril.insert(iter, ((value >> 6) & Ox1F) | 0xCO);
}
( continued . . . )

57



CsString to the Rescue

} else if (value <= OxFFFF) {
iter = stril.insert(iter, ((value ) & Ox3F) | 0x80);
iter = stril.insert(iter, ((value >> 6 ) & Ox3F) | 0x80);
iter = stril.insert(iter, ((value >> 12) & OxOF) | OxEOQ);

} else {
iter = stril.insert(iter, ((value ) & Ox3F) | 0x80);
iter = stril.insert(iter, ((value >> 6 ) & Ox3F) | 0x80);
iter = stril.insert(iter, ((value >> 12) & Ox3F) | 0x80);
iter = stril.insert(iter, ((value >> 18) & 0x07) | OxFO0);

return iter;

58



CsString to the Rescue

e Testing
o twelve usage tests containing 85 test points
o included with CsString, test folder
o human readable output

unit test containing 1200 test points

development testing

every test performed on UTF-8 and UTF-16

all tests are validated against std::string, when possible

O O O O

59



CsString Testing

e Unit Test 6

CsString: :CsString str1(“Ending character is 3 bytes”);
str1.append(UCHAR('3V"));

Insert 2 left arrows at the 7th character
Endingd< character is 3 bytes 1

Insert string literal at the 7th character
Ending [string literal] << character is 3 bytes 3

Replace string literal at the 7th character
Ending { new string text } character 1s 3 bytes 1

60



CsString Testing

e Unit Test /7

Original String: ABCDI¢E)F

Walk backwards:
Walk backwards:
Walk backwards:
Walk backwards:
Walk backwards:
Walk backwards:
Walk backwards:
Walk backwards:
Walk backwards:

> 0 N O <0 M > T

Note: musical symbol 8th note is U+1D160, outside BMP 61



CsString Testing

e Unit Test /7

Original String: ABCDI¢E)F
Substring beginning at 3, length 4. DI/E

Erase A element: BCDIEMF
Erase B element: CDI;E»F
Erase C element: DI;E)F
Erase D element: J:E)F
Erase 1 element: (E»F
Erase ¢ element: E)F
Erase E element: »F

Erase » element: F

Erase F element:

62



CsString Testing

e Unit Test 8

Original String (1 is 3 bytes): ABCD!

String - size_storage() : 7
String - size_codePoints() 5
String - size() : 5
String - length() . 5

Copy original string from begin() + 2 : CDV
Substring beginning at 3, length 2 : DI

63



CsString integrated with CopperSpice

e PartV

64



CsString integrated with CopperSpice

e QString
o current string class is UTF-16
o does not fully support code points outside the BMP

e (QString8
o beta release CopperSpice 1.4.1 (released May 1 2017)
o production release CopperSpice 1.5.0

e (QString16
o pending

65



CsString integrated with CopperSpice

e (QString8 enhancements
o arg()
m similar to printf()
m around 20 different versions
m refactor using variadic templates

o remove QLatin1String
m wrapper for a const char *
m unnecessary since CsString can decipher between a
C style string and a string literal

66



DoxyPress improved String handling

e Part VI

67



DoxyPress improved String handling

e Resolved issue
o during usage testing we discovered | was not
appearing in the html output
o lex rules were matching a single byte at a time
o required another rule to decipher when a byte was
part of multi-byte code point
o issue discovered in multiple places

68



DoxyPress improved String handling

e Switching from QString to QString8
o will reduce memory usage by 50%
o continuous conversions between UTF-16 and UTF-8
m const char * result = data.toUtf8().constData();

69



Putting it all Together

e What is next?

70



Putting it all Together

e Piece by piece
o developing CopperSpice proved we needed to design a
standalone Signal / Slot library (CsSignal)
o deadlocks in CsSighal demanded a threading library
o unable to document CopperSpice we created DoxyPress
and switched parsing from lex to clang for C++
o mangled text required a Unicode aware string library

o (CsSignal uses libGuarded

o CopperSpice uses CsSignal and CsString
o DoxyPress uses CopperSpice

71



Future Plans

e (sString

o add I1S0-8859-1 encoding (maybe others)

o implement small string optimization

o add locale aware comparison using Unicode algorithms
o add normalization functions

e libGuarded

o associative containers
o lock free containers

72



Future Plans

e CopperSpice

o complete QString8 and QString16
redesigh QMap and QHash leveraging STL containers
optimize QVariant
lambda based indexOf and lastindexOf, all container classes
MSVC using clang front end, if possible

O O O O

e (sSignal

o improve move semantics

73



Future Plans

e DoxyPress
o add parsing support for clang 3.8 and clang 3.9
o optimize clang integration used in parsing
o refactor comment parser
o improve unicode support

74



Libraries & Applications

e CopperSpice
o libraries for developing GUI applications

e PepperMill
o converts Qt headers to CS standard C++ header files

e (sSignal Library
o thread aware signal / slot library

e (sString Library
o unicode aware string support library

e LibGuarded

o multithreading library for shared data -



Libraries & Applications

e KitchenSink
o one program which contains 30 demos

o links with almost every CopperSpice library

e Diamond
o programmers editor which uses the CS libraries

e DoxyPress & DoxyPressApp
o application for generating documentation for a variety of

computer languages in numerous output formats

76



Where to find our libraries

® WWW.copperspice.com
download.copperspice.com
e forum.copperspice.com

e ansel@copperspice.com
e barbara@copperspice.com

e (Questions? Comments?

77



