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Introduction

● Where is the Beginning
● Data Types
● References
● Const Const Const
● Semantics
● Templates
● Full Example
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Where is the Beginning

● Where are you starting from?
○ if your background is from C

■ your definition of a reference may be inaccurate
■ you might think pointer and reference mean the

same thing or they are the inverse of each other

○ if you started with C++98
■ your definition of a reference may be incomplete
■ you might think references are implemented as pointers

○ if your background was not C++
■ do you consider how data is passed
■ do you think about when resources are released
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Where is the Beginning

● If you think C++11 was just C++98 with a bit more stuff...
○ it should be considered a new language
○ defined new data types
○ added semantics, new value categories
○ constexpr, lambdas, smart pointers
○ added a memory model and threading library 
○ sparked new interest in compiled languages

● C++ standard
○ C++98 standard is   832 pages
○ C++11 standard is 1222 pages
○ C++14 standard is 1261 pages
○ C++17 standard is 1485 pages
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Where is the Beginning

● We need to start with data types 
○ can you define what a data type is?
○ what are the data types in C++?
○ what is a reference and is it a data type?
○ is a reference an idea, hype, or really important to know?
○ what are semantics?
○ is a reference the same as an lvalue reference?
○ is a forwarding reference the same thing as perfect forwarding?
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Where is the Beginning

● If you are unable to work through the following, you may
not know the fundamentals of C++

A partially specialized templated class with an enable_if 
for SFINAE, containing a variadic templated method which 
takes a parameter pack, with a trailing return type which 
is deduced based on an expression decltype, then using 
perfect forwarding to call a policy method.
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Data Types 101

● Definition of a data type

A data type is a classification identifying the possible values 
for that type and the operations which can be done on values 
of that type.
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Data Types 101

● Primitive or Simple Data Types
○ data types provided by the programming language
○ only one value can be associated with a variable of a primitive

data type
○ very few languages allow the behavior or capabilities of primitive 

data types to be modified

● Examples:  char, int, bool, double, float
○ the void type has an empty set of values, it is mainly used as a 

return type for functions
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Data Types 101

● Built In Data Types 
○ programming language provides built in support

● Examples: lists, hash tables, complex numbers
○ std::complex<double> z = 1.0 + 2i;
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Data Types 101

● Composite or Compound Data Types 
○ data type which is derived from more than one primitive and/or 

built in data type
○ creating a composite data type generally results in a new data type

● Examples: array, structure, class
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Data Types 101

● User Defined Data Types 
○ adding classes to your program is the methodology for creating

new composite data types in C++ 
○ another way to create a user defined data type is by declaring

an enumeration type

● Examples: 
○ enum class Spices { mint, basil, salt, pepper };
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Data Types 101

● Abstract Data Type 
○ any type which does not specify an implementation
○ not necessarily an OOP concept
○ for example, a Stack has push() and pop() which have well defined 

behavior, however their implementation can be done in a variety
of ways

○ An abstract class may not have definitions for all the methods it 
declares. You can not directly instantiate an abstract class.
Instead, create a subclass and instantiate the child class.
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Data Types 102

● Atomic Data Types
○ no component parts which can be accessed individually
○ a type which encapsulates a value whose access is guaranteed to 

not cause data races and can be used to synchronize memory 
accesses among different threads

● Example 1: 
○ a single character such as "x" is atomic

● Example 2: 
○ the string "Chocolate Cake" is not atomic as it is composed of 

multiple individual character values
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Data Types 102

● Pointer Data Type
○ the data type of a pointer is derived from the data type or

abstract data type it is pointing to
○ the data type of the pointer is a different data type from the

data it points to

● int *foo1;
○ foo1 is a pointer to something of type int

● Widget *var2;
○ var2 is a pointer to something of type Widget
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Data Types 102

● Pointer Data Type
○ a pointer refers directly to another value stored elsewhere in 

computer memory 
○ an abstract way of thinking about pointers is like a scavenger hunt
○ you proceed to the first address where you pick up the address

of the real treasure is located. 
○ the address of the first clue is at 1020 Palm Drive, when you

arrive there is information saying the treasure is located at
1619 Pine Street
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Data Types 102

● Pointer visibility

class Ginger {
  ...

  private:
    std::string *m_string;  
};

● Quiz 1
○ is the pointer private?
○ is the string m_string points to private?

16



Data Types 102

● Example:
○ given an object which is a “House”
○ the address of the house is 1600
○ “1600” is stored at memory location 100

House *mansion;

● What does the receiver want?  
○ if the receiver wants the data by reference or by value, then

you need to pass the object

○ passing mansion passes a pointer     ( passing the address 1600 )
○ passing *mansion passes the object  ( passing the entire house )
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Data Types 102

● Reference Data Type
○ in C, function arguments are always passed by value
○ passing an object by value can be costly since it requires making a 

copy of the original data and then passing the copy of the data to 
the function or method

○ to fake pass by reference in C a pointer data type is passed to the 
function

○ passing by reference means only a reference to the data is passed 
and not the actual data
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Data Types 102

● Reference Data Type
○ using a pointer to implement "pass by reference" in C++ works, 

however it is extremely important to understand this is not a
C++ reference

○ if you use a pointer to "pass by reference" you are actually passing 
the pointer by value

○ the called function must dereference the passed pointer to
access the actual data

○ changes to the passed pointer will not affect the pointer value in 
the caller, but changes to the data the pointer points to, will 
change the original data
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Data Types 102

● Example 1:
House *mansion;
thing1(mansion);

void thing1(House *x) {
  print(x);
  print(*x);
}

● Example 2:
House *mansion;
thing2(*mansion);

void thing2(House &x) {
  print(x);
  print(&x);
} 20



Data Types 102

● Example 1:
House *mansion;
thing1(mansion);

void thing1(House *x) {
  print(x);                // 1600
  print(*x);               // the house
}

● Example 2:
House *mansion;
thing2(*mansion);

void thing2(House &x) {
  print(x);                // the house
  print(&x);               // 1600
} 21



Data Types 102

● Reference Data Type
○ the reference data type was added in C++98
○ references were initially introduced to just support operator 

overloading

○ to support pass by reference efficiently, new reference data types 
were added to C++11
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Data Types 102

● Reference Data Type
○ the & character can represent any of the following:

■ used in reference data types
■ address of operator
■ bitwise AND operator
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Data Types 102

● Pointers vs References
○ using a reference to an object is the same as using the original 

object
○ the "address of operator" will return a pointer referring to the 

original object
○ the C++ Standard does not force compilers to implement

references using pointers

Widget button;
Widget & pb = button;
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Data Types 201

● Expressions
○ a sequence of operators and their operands which specify a 

computation
○ an operator with its operands, a literal, or a variable name
○ characterized by a (1) data type and a (2) value category 
○ expression evaluation may produce a result (x = 2 + 3)

or may generate side-effects (printf)
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Data Types 201

● Value categories
○ lvalue
○ rvalue

○ every expression is either an lvalue or an rvalue
○ an lvalue is not an rvalue and an rvalue is not an lvalue

○ the sub-categories will be explained
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Data Types 201

● Value categories are a property of an expression
○ does it have an identity

■ does the expression have a name
■ does the expression have a memory location
■ can you take the address of the expression

○ can it be moved from
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Data Types 201

● lvalue
○ typically an entity which has a name
○ the lifetime persists beyond the current expression
○ must be able to take the address using the & operator
○ has identity and can not be moved from

Widget *button = new Widget; 
○ button is an lvalue of a pointer type
○ *button is an lvalue referring to the object button is pointing to
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Data Types 201

● Quiz 2 : values

int foo1 = 7;    
foo1 = 9; // is foo1 an lvalue?

const int foo2 = 7;    
foo2 = 9; // is foo2 an lvalue?

29



Data Types 201

● rvalue
○ a temporary value which does not persist beyond the expression 

which uses it
○ may or may not have an identity 
○ can be moved from

○ a literal such as 42, true, or nullptr
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Data Types 201

● Examples: values

int someVarA = 35;

○ data type of someVarA is int, it is an lvalue 
○ data type of 35 is int, it is an rvalue

int 35 = someVarB;

○ this is not legal code since 35 is an rvalue and located on the
left side of the expression
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Data Types 201

● References
○ lvalue reference
○ const reference
○ rvalue reference

● To understand references we ask, what does it mean to 
pass by value or pass by reference?
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Data Types 201

● Pass by Value
○ lvalue and rvalue, pass by value

class Widget{ };                  // define a class
void func(Widget pb);             // receives by value

Widget x;                         // lvalue
func(x);                          // lvalue ok

func( Widget{} );                 // rvalue ok
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Data Types 201

● Pass by Reference
○ lvalue reference, called func() can modify

class Widget{ };                  // define a class
void func(Widget & pb);           // receives by lvalue reference

Widget x;                         // lvalue
func(x);                          // lvalue ok

func( Widget{} );                 // rvalue error
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Data Types 201

● Pass by Reference
○ const reference, called func() can not modify

class Widget{ };                  // define a class
void func(const Widget & pb);     // receives by const reference

Widget x;                         // lvalue
func(x);                          // lvalue ok

func( Widget{} );                 // rvalue ok
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Data Types 201

● Pass by Reference
○ rvalue reference, called func() can modify however the caller

can not observe the changes

struct Widget{ };                 // define a structure
void func(Widget && pb);          // receives by rvalue reference

Widget x;                         // lvalue
func(x);                          // lvalue error

func( Widget{} );                 // rvalue ok
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Data Types 201

● lvalue reference
○ caller will observe the modifications made in the called function 

● const reference
○ called function can not modify the object 

● rvalue reference
○ called function can modify the object
○ caller promises not to observe the changes
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Data Types 201

● rvalue reference
○ declared using &&
○ in a declaration && usually means an rvalue reference, however 

sometimes it means either ‘rvalue reference’ or ‘lvalue reference’
○ can be on the left side of an expression

○ C++11 extended the notion of rvalues by letting you bind an 
“rvalue reference” to an “rvalue”, this prolongs the lifetime of
the rvalue as if it were an lvalue
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Data Types 201

● Examples: rvalue reference

int && func() {
  return 42;                  // returns an rvalue 
}

int main() {
  int && foo = func();        // what is the “value category” of foo?
                              // what is the data type of foo?

  int bar = foo + 3;          // is this valid? if so, what is bar?
  foo = 47;                   // does this compile?
}
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Data Types 201

● Example: references

int & func() {
  return 42;                  // 42 is an rvalue, this does not compile 
}

○ the return type here is specifying an lvalue reference
○ however, the return expression is an rvalue, this is a compile

error to ensure you do not accidentally do this
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Data Types 201

● rvalue reference
○ if you think “rvalue reference” whenever you see && in a

declaration, you will misread C++
○ && might actually mean &

○ if a variable or parameter is declared to have type T && for
some deduced type T, that variable or parameter is a
“forwarding reference”
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Data Types 201

● Example: references

Widget && varA = Widget{};      
auto && varB   = varA;              // && does not mean rvalue reference
   

○ varA is an lvalue (value category) of type (data type) 
rvalue reference to Widget

○ varB is called a “forwarding reference” which is being initialized 
with an lvalue

○ this means varB is deduced to be an lvalue reference
○ varB acts as if it were declared using:

Widget & varB = varA;
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Data Types 201

● Example: references

const Widget *foo;
someMethod(X);

void someMethod(const Widget &);

○ what value category does someMethod want?
○ what data type does someMethod want?
○ foo is a pointer, is it an lvalue or an rvalue?
○ what should be passed for X?  (foo, &foo, *foo)
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Data Types 201

● Example: references

const Widget *foo;
someMethod(X);

void someMethod(const Widget &);

○ what value category does someMethod want? either
○ what data type does someMethod want? Widget
○ foo is a pointer, is it an lvalue or an rvalue? lvalue
○ what should be passed for X? *foo

44



In a Nutshell ( Definitions )

● Data Type
○ values

■ 12, true, “cake”
○ operations

■ what can be done with the data 
(compare, assignment, some manipulation)

● Expression
○ value category

■ lvalue, rvalue
○ data type

■ int, pointer, string, hash, lvalue reference
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Data Types - Value Categories

● C++11 additional new value categories
○ every value is either a glvalue or a prvalue, but not both
○ xvalue, an “eXpiring” value
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Data Types - Value Categories

● Rules for value categories of an expression
○ prior to C++11 the rules for distinguishing between glvalue/prvalue,   

the standard referred to lvalue/rvalue
○ these rules were either unintentionally wrong or contained lots

of explaining and exceptions
○ the committee decided to clarify the standard and add names and 

definitions for glvalues and prvalues
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Data Types - Const

● Const qualifier
○ const variable

■ const int var
○ const reference

■ const Widget &var
○ const pointer

■ char *const var
○ pointer to const

■ const char *var
○ const methods

■ void someMethod() const
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Data Types - Const

● constexpr vs const
○ const means “promise not to change”

■ who promises not to change what
○ constexpr means “known at compile time”
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Data Types - Cast

● static_cast
○ always defined behavior, known at compile time

● dynamic_cast
○ always defined behavior, might fail at runtime

● const_cast
○ only used to remove const

● reinterpret_cast
○ should be called shut_up_compiler_cast

● (int)
○ should be called dangerous_cast
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Data Types - Semantics

● Semantics
○ relates to the meaning of something
○ “the lawnmower is brave”

■ the grammar or syntax is correct
■ the semantics are meaningless

○ if you misspell a command, it is a syntax error
○ when you type a legal command which does not make any sense, 

this is a semantic error

○ we should think about semantics when naming classes, structures, 
methods, functions, variables, enums, etc

○ semantics as related to the behavior of a data type
■ what does it mean when you make a copy 
■ what does it mean when you assign
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Data Types - Semantics

● Different kinds of Semantics in C++
○ value semantics
○ move semantics
○ reference semantics (pointer semantics)
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Data Types - Semantics

● value semantics
○ only the value matters, not the identity or address of the object
○ usually uses the assignment operator to set a new value

■ int x = 7;
■ ++x;

○ implies immutability of the object
■ an immutable object is one whose state can not be

modified after it is created
● the value is immutable, it is 7
● the identity x, may have a changing value over time
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Data Types - Semantics

● move semantics
○ based on rvalue references
○ an rvalue is a temporary object which is going to be destroyed at 

the end of an expression 
○ In older C++, rvalues only bind to const references
○ C++11 allows non-const rvalue references, which are references to 

an rvalue objects
○ since an rvalue is going to die at the end of an expression, you can 

steal its data
○ instead of copying it into another object, you move its data into 

another object
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Data Types - Semantics

● reference semantics (pointer semantics)
○ variables refer to a common value when assigned to each other

or passed as parameters
○ flexibility, dynamic binding
○ objects can be large and bulky, copying them every time they are 

passed as parameters is slow
○ if two variables refer to the same object, modifying one of them 

will also make a change in the other
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Data Types - Semantics

● Examples:

Widget x;
Widget *y;

foo(std::move(x));        // what got moved? what semantics is this?
foo(std::move(y));        // what got moved? what semantics is this?
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Data Types - Pointers

● Smart Pointers, brief overview
○ abstract data type which simulates a pointer
○ provides automatic memory management
○ added in C++11

■ unique_ptr
■ shared_ptr
■ weak_ptr

○ auto_ptr
■ deprecated in C++11
■ switch auto_ptr to unique_ptr
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Templates

● Templates, defined
○ the purpose of a template is to design an entity without knowing

the precise data type
○ used only at compile time to generate a class, method, function,

or variable based on one or more data types
○ most of the cost for using templates is paid at compile time
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Templates

● When is a template used
○ a template is instantiated at compile time

■ for a templated class, the compiler creates a cookie cutter
■ data types in the template list are used to decide which 

specific instances will be required

○ at run time classes are instantiated
■ cookies are the objects or the instances of a class
■ at runtime the cookies are created and destroyed
■ only objects of the instantiated classes can be constructed
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Templates

● Examples: templated class with a specialized method

template <class T>                       // “class” or “typename”
class Widget
{   
  public: 
    void setName();
};

template <>                              // required, templated class
void Widget<int>::setName()              // specialization of a member
{     
  . . .
}
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Templates

● Examples: templated class with a templated method

template <class T>
class Widget
{  
  public: 
    template<class M>
    void setName(M data);
};

template <class T>
template <class M>
void  Widget<T>::setName(M data) 
{     
  . . .
}
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Templates

● Examples: templated class with a class partial specialization

template <class T>
class Widget
{ 
  . . . 
};

template <class X>
class Widget<std::vector<X>>
{ 
  . . . 
};

Widget<int> foo1;                        // T is int
Widget<std::vector<int>> foo2;           // X is int
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Forwarding

● Perfect Forwarding
○ a template function or method which forwards arguments while 

preserving the const qualifier and lvalue / rvalue category
○ rvalue reference rules are used to deduce reference types in

the template instantiation
○ the called function or method will receive exactly the same 

arguments, with the same value categories as were passed into
the function which is forwarding

○ use std::forward()
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Deduction

● Data type deduction in templates
template<typename T>
void func(T & someVar);

const int x = 42;
func(x);

                                   
○ T is deduced to be const int
○ the type of someVar is deduced as const int &

○ func() appears to take an lvalue reference but in fact it can
take an “lvalue reference” or a  “const reference”
■ const can be added to the T
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Deduction

● Example: rvalue reference revisited

template<typename T>                      
void func(std::vector<T> && var3); 

○ T will be deduced to some data type
○ std::vector<T> is not a deduced data type but rather a 

dependent data type based on the data type of T
○ the type of var3 can only be an “rvalue reference”
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Variadic Templates

● Example:
template<typename ...Ts>               // parameter pack Ts
void makeWidget( Ts ...Vs )            // parameter pack Vs
{
  someFunc( Vs...);                    // expansion  
}           

○ the ellipsis (...) operator has two roles 
■ to the left of a parameter name, it declares a parameter pack
■ to the right of an expression the ellipsis operator unpacks

the parameters into separate arguments
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SFINAE

● Definition    
○ substitution failure is not an error
○ occurs during template instantiation (compile time)

○ for a given T, if the compiler is unable to evaluate a template 
parameter then this template specialization is ignored

○ if another template that matches can be instantiated
successfully no compile time error is generated
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SFINAE

● Example:
template <typename T, typename = void>
class Widget

template <typename T>
class Widget< std::vector<T>,  
              typename std::enable_if< std::is_enum<T>::value >::type >

○ is_enum<T>::value       // takes a data type,  returns a bool value
○ enable_if<bool>::type   // takes a bool value, returns void or compile error

                               

Widget<int>;
Widget<std::vector<Spices>>;
Widget<std::vector<int>>;
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Full Example

template<typename T, typename = void>
class Bento
{
  . . . 
};

template<typename T>
class Bento<T, typename std::enable_if<std::is_move_assignable<T>::value>::type>
{
  template<typename ...ArgTypes>
  auto myMethod ( ArgTypes ...&& Vs ) -> 
       decltype( T::someMethod( std::forward<ArgTypes>(Vs)... ) )
  {
    return T::someMethod( std::forward<ArgTypes>(Vs)... );
  }
};
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Libraries

● CopperSpice
○ libraries for developing GUI applications

● CsSignal Library
○ standalone thread aware signal / slot library

● CsString Library
○ standalone unicode aware string library

● libGuarded
○ standalone multithreading library for shared data
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Please subscribe to our Youtube Channel

● Presentations
○ Why DoxyPress
○ Why CopperSpice
○ Compile Time Counter
○ Modern C++
○ CsString
○ Multithreading in C++
○ Next video available on Nov 16

https://www.youtube.com/copperspice
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Where to find CopperSpice

● www.copperspice.com

● ansel@copperspice.com
● barbara@copperspice.com

● source, binaries, documentation files
○ download.copperspice.com

● source code repository
○ github.com/copperspice

● discussion
○ forum.copperspice.com 72


