
Doxygen to DoxyPress:
A Journey from C++98 to C++11

Barbara Geller & Ansel Sermersheim
CPPCon - September 2015

1

Introduction

● Why documentation is Important
● Limitations of Doxygen
● Why DoxyPress
● Migrating code from C++98 to C++11
● Future plans for DoxyPress

Questions welcome anytime...

2

Why Documentation is Important

● Who needs documentation?
○ developers of your application
○ users of your library or application
○ your future self

● What should be documented
○ how to set up your environment
○ class and method documentation
○ overall system design
○ timeline or change log
○ error conditions
○ samples 3

Why Documentation is Important

● When to create documentation
○ day one of your project
○ yesterday
○ today
○ tomorrow

4

Overview of Doxygen

● Development started around 1995
● Open Source / GPL
● Written in C++

● Uses obsolete/unmaintained Qt 1.9 classes
● Core classes hand modified
● Non standard language translation functionality

5

Limitations of Doxygen

● Container classes store pointers (not values)
● Autodelete memory management
● Macros used to simulate variadic templates
● Riddled with raw pointers
● Code extremely difficult to read

○ very limited line breaks
○ prolific use of variable names like: bcli, bii, cli, cei,

cni, di, dcli, ei, eli, evi, i, ii, iii, l, li, lti, mli, mnii, pli,
mri, sl, sli, slii

6

Limitations of Doxygen

● extra <div> tags in HTML output
● blank lines can not be used in a table
● layout file is not fully customizable
● HTML 5 not fully supported
● HTML output is not W3C compliant
● project file is raw text, requires Lex to parse
● limited options sorting in a navigation tree
● <dl> can not contain multiple <dd>
● problems with auto brief
● unable to parse some macros

7

Now What?

● Unable to document our CopperSpice library
● Contacted the maintainer of Doxygen
● Not very receptive
● Initial direction was to help improve Doxygen
● Code was simply unmaintainable

8

What is DoxyPress

● DoxyPress is a fork of Doxygen 1.8.8
● Backported relevant changes through 1.8.10

● Full rewrite of DoxyWizard
● Name was changed to DoxyPressApp

● DoxyPress and DoxyPressApp link with the
CopperSpice libraries

9

Doxygen - Example 1

10

● Existing current code
● String class returns ‘\0’ (a null char) if an invalid

index is accessed
● Access off the end of a string is acceptable code

if (result.at(0) == ':' && result.at(1) == ':') {
. . .

}

DoxyPress - Example 1

11

● Using CopperSpice string class (QString)
● Accessing an invalid index is an error, which is

similar to std::string

// A
int len = result.size();
if (len >= 2 && result.at(0) == ':' && result.at(1) == ':') {

. . .
}

// B
if (result.startsWith(”::”)) {

. . .
}

Doxygen - Example 2

● FORALL3() is a macro used to forward 3 parameters
to a method

#define FORALL3(a1,a2,a3,p1,p2,p3) \
void OutputList::forall(void (OutputGenerator::*func)(a1,a2,a3), \
 a1,a2,a3) \
{ \

QListIterator<OutputGenerator> it(m_outputs); \
OutputGenerator *og; \
for (it.toFirst(); og=it.current(); ++it) \
{ \

if (og->isEnabled()) (og->*func)(p1,p2,p3); \
} \

}

12

Doxygen - Example 2

● For 3 parameters there are 9 different forms

FORALL3(bool a1,HighlightedItem a2,const char *a3,a1,a2,a3)
FORALL3(bool a1,bool a2,bool a3,a1,a2,a3)
FORALL3(const ClassDiagram &a1,const char *a2,const char *a3,a1,a2,a3)
FORALL3(const char *a1,const char *a2,const char *a3,a1,a2,a3)
FORALL3(const char *a1,const char *a2,bool a3,a1,a2,a3)
FORALL3(const char *a1,int a2,const char *a3,a1,a2,a3)
FORALL3(const char *a1,const char *a2,SectionInfo::SectionType a3,a1,a2,a3)
FORALL3(uchar a1,uchar a2,uchar a3,a1,a2,a3)
FORALL3(Definition *a1,const char *a2,bool a3,a1,a2,a3)

● Same style of code exists for passing 6 (2 forms),
5 (2 forms), 4 (4 forms), 2 (9 forms), and 1 (12 forms)

● 200+ lines of code

13

DoxyPress - Example 2

● The entire FORALL macros were replaced with
the following 9 lines of code

template<class BaseClass, class... Args, class... Ts>
void forall(void (BaseClass::*func)(Args...), Ts&&... vs)
{

for (auto item : m_outputs) {
if (item->isEnabled()) {

(item->*func)(vs...);
}

}
}

14

Overview of DoxyPress

● Removed all Qt 1.9 classes and containers
○ string classes auto convert to char *
○ containers were pointer based, not value based

● Code reformatted
● Enhanced source to use C++11
● Shared pointers instead of raw pointers
● Variadic templates instead of macro abuse
● Project file changed from text to JSON format
● Easy to convert a Doxygen project file to a

DoxyPress project file

15

Overview of DoxyPress

● Extraneous <div>’s removed from the output
● Whitespace and blank lines allowed in a table
● Added \code{.mk} for documenting Makefiles
● Added \sortid X for sorting navigation tree
● Fixed <dl> so it can contain multiple <dd> tags
● Images no longer force a new paragraph
● Additional features and corrections: http://www.

copperspice.com/docs/doxypress/timeline.html

16

Migrating from C++98 to C++11

● Ensure copy constructor is a deep copy

● Raw pointers shared pointers
○ with raw pointers it is unclear who is responsible for

object destruction
○ too easy to accidentally use a raw pointer after the object

has been deleted
○ use QMakeShared in CopperSpice or std::make_shared

instead of calling new

○ this type of pointer conversion can not be done gradually

17

Migrating from C++98 to C++11

● for loop
○ C++11 range based syntax
○ use auto for declaring iterators

● Container misuse
○ QHash<QString, void *> files;
○ files.insert(“myFile”, (void *)0x08);
○ a large amount of code used pointers

● Override
○ ensure methods which override a base class method are

marked with “override”

18

Migrating from C++98 to C++11

● Character set encoding
○ use UTF-8 internally
○ program as if your application will be used internationally

● Strings
○ avoid using const char * (memory management issues)
○ use std::string class, or
○ use QString class in CopperSpice

● Use nullptr instead of 0
○ improves readability
○ zero can mean nullptr or an empty string

19

Future Plans for DoxyPress

● Switch to libClang for parsing
○ C, C++, Objective C, Objective C++

● Support for other languages like D and extended
support for Python and C#

● Optimize internal structures for efficiencies

● User requests & Developer Contributions

20

Libraries & Applications

● CopperSpice
○ Libraries for developing GUI applications

● PepperMill
○ Converts old headers to CS standard C++ header files

● KitchenSink
○ Over 30 CopperSpice demos in one application

● Diamond
○ Programmers Editor which uses the CopperSpice

libraries
● DoxyPress & DoxyPressApp

○ Documentation program, works with C++11
21

Where to find DoxyPress

● www.copperspice.com
● download.copperspice.com
● forum.copperspice.com

● ansel@copperspice.com
● barbara@copperspice.com

● Questions? Comments?

22

