
Back to Basics
Lambda Expressions

Barbara Geller & Ansel Sermersheim
CppCon September 2020

Introduction

● Prologue
● History
● Function Pointer
● Function Object
● Definition of a Lambda Expression
● Capture Clause
● Generalized Capture
● This
● Full Syntax as of C++20
● What is the Big Deal
● Generic Lambda

2

Prologue

3

● Credentials
○ every library and application is open source
○ development using cutting edge C++ technology
○ source code hosted on github
○ prebuilt binaries are available on our download site
○ all documentation is generated by DoxyPress

○ youtube channel with over 50 videos
○ frequent speakers at multiple conferences

■ CppCon, CppNow, emBO++, MeetingC++, code::dive
○ numerous presentations for C++ user groups

■ United States, Germany, Netherlands, England

Prologue

4

● Maintainers and Co-Founders
○ CopperSpice

■ cross platform C++ libraries

○ DoxyPress
■ documentation generator for C++ and other languages

○ CsString
■ support for UTF-8 and UTF-16, extensible to other encodings

○ CsSignal
■ thread aware signal / slot library

○ CsLibGuarded
■ library for managing access to data shared between threads

Lambda Expressions

● History
○ lambda calculus is a branch of mathematics

■ introduced in the 1930’s to prove if “something” can be solved
■ used to construct a model where all functions are anonymous

■ some of the first items lambda calculus was used to address
● if a sequence of steps can be defined which solves a problem,

then can a program be written which implements the steps
○ yes, always

● can any computer hardware simulate any other computer
○ yes, given sufficient time and memory

■ languages which were influenced by lambda calculus
● Haskell, LISP, and ML

5

Lambda Expressions

● History
○ why do we use the terminology lambda expression

■ greek letter λ refers to an anonymous function
■ lambda - chosen since it is equated with something nameless
■ expression - required since the code can be evaluated and will

return a value

○ fundamental definition in C++
■ an expression which returns a function object

○ lambda expressions are in many computer languages
■ C++, C#, Groovy, Java, Python, Ruby

6

Lambda Expressions

● Function Pointer
○ data type
○ pointer to any function
○ signature of the function must match the declaration of the pointer
○ invoked by the pointer name just like a normal function call
○ a function pointer is not dereferenced

○ usage:
■ callback function
■ an argument to another function

7

Lambda Expressions

● Example 1
○ myProcess is a function pointer, where this pointer can only point

to a function with a parameter of int and return type of void
○ std::exit is a function

■ name of a function implicitly converts to a function pointer

#include <cstdlib>

void (*myProcess)(int); // declaration of the pointer
myProcess = std::exit;

myProcess(42); // calls std::exit

8

Lambda Expressions

● Operator Overloading
○ any method which starts with “operator” followed by a symbol,

are called overloaded operators
■ bool operator==(const T &value)
■ bool operator>(const T &value)
■ T operator+=(const T &value)

○ any method with the exact name “operator()” is called the
function call operator
■ void operator()()
■ bool operator()(int value)
■ double operator()(double d1, double d2)

9

Lambda Expressions

● Function Object
○ function object data type

■ class or structure with a function call operator method

○ function object
■ an instance of a function object data type
■ a callable object

○ a function object is called using normal function syntax
■ can receive parameters
■ has a return type

10

Lambda Expressions

● Example 2
○ create a class named Ginger

■ contains a method named operator()
■ Ginger is a function object data type

○ usage A and usage B do the exact same thing

class Ginger {
 void operator()(std::string str);
};

Ginger widget;
widget.operator()(“hello”); // line A
widget(“hello”); // line B

11

Lambda Expressions

● Avoid using the term Functor
○ in mathematical terms it is a function which

■ takes one or more functions as its arguments
■ returns a function as the result

○ functor is also defined in mathematical category theory

○ functional programming
■ defines it as a function which performs mapping operations

○ when C++ developers uses the word “functor” they usually are
referring to a function object or a function object data type

12

Lambda Expressions

● Terminology Review
○ functor

■ please use “function object” if that is what you mean

○ function pointer
■ pointer which refers to a function rather than pointing to data

○ function object data type
■ class which declares the operator()() method

○ function object
■ instance of a function object data type

○ std::function
■ container, holds a single function pointer or a function object

13

Lambda Expressions

● Definition of a Lambda Expression
○ first introduced in C++11

○ syntax for a lambda expression consists of specific punctuation
■ [] () {}

○ key elements
■ [capture clause] (parameter list) -> return type { body }

○ a lambda expression . . .
■ assignable to a variable whose data type is usually auto
■ defines a function object

14

Lambda Expressions

● Definition of a Lambda Expression
○ capture clause

■ variables which are visible in the body
■ capture can happen by value or reference
■ can be empty

○ parameter list
■ can be empty or omitted

○ return type
■ data type returned by the body, optional, normally deduced

○ body
■ contains the programming statements to execute
■ can be empty

15

Lambda Expressions

● Example 3
○ x is captured from the outer scope
○ nothing in the parameter list
○ quiz: what value is printed

int main()
{
 int x = 42;
 auto myLamb = [x] ()
 {
 cout << "Hello from a lambda expression, value = " << x << endl;
 };

 x = 7;
 myLamb();
}

16

Lambda Expressions

● Example 4
○ x is captured from the outer scope
○ nothing in the parameter list
○ quiz: what value is printed

int main()
{
 int x = 42;
 auto myLamb = [&x] ()
 {
 cout << "Hello from a lambda expression, value = " << x << endl;
 };

 x = 7;
 myLamb();
}

17

Lambda Expressions

● Picky Details
○ everything to the right of the equal sign is the lambda expression
○ result of this expression is assigned to our variable

■ expression is first evaluated
■ then myLamb is initialized

○ give some thought to your variable name

○ a closure is simply a function object . . .
■ which is returned from the evaluation of a lambda expression
■ myLamb contains the closure
■ deduced type is a “closure data type”

auto myLamb = [] () { return 17; };

18

Lambda Expressions

● Capture Clause
○ by value

■ capture is by const value
■ only variables in the local scope or “this” can be captured
■ x will be copied into the function object
■ capture occurs when the lambda expression is evaluated
■ original variable does not need to stay alive

■ if any captured value will be modified in the body, the lambda
expression must be declared mutable

auto myLamb = [x] () mutable { return ++x; };

19

Lambda Expressions

● Capture Clause
○ by reference

■ an & is added to indicate capture by lvalue reference
■ it is not valid to capture by rvalue reference

■ capture occurs when the lambda expression is evaluated
■ ensure captured lvalue references remain alive for the entire

lifetime of the closure

auto myLamb = [&x] () { return ++x; };

20

Lambda Expressions

● Capture Clause
○ C++11

■ capture by value or reference

○ C++14
■ generalized capture was added

21

Lambda Expressions

● Capture Clause
○ generalized capture

■ capture is initialized by value
● [varA = 10]
● [varB = x]

■ capture is initialized by reference
● [&varC = y]
● y must be declared in the local scope

■ capture is initialized by move
● [varD = std::move(z)]
● move occurs when the lambda expression is evaluated

22

Lambda Expressions

● Capture Clause
○ C++11

■ [this]
■ captures this pointer by value

○ C++14
■ [self = *this]
■ capture *this object by value, initializes a new variable

○ C++17

■ [*this]
■ capture *this object by value

23

Lambda Expressions

● Capture Clause
○ default capture by value
○ captures all variables used in the body of the lambda expression

■ auto myLamb = [=] () { return x + m_data; };

○ default capture by reference
○ captures all variables used in the body of the lambda expression

■ auto myLamb = [&] () { return x + m_data; };

○ starting with C++20
■ default capture of this pointer by value has been deprecated

24

Lambda Expressions

● Capture Clause
○ C++ standard defines the result of evaluating a lambda expression

which does not capture anything as a special kind of closure

■ special closure has no state so it can be implicitly converted
to a function pointer

■ if you are calling a C function which wants a function pointer,
you can pass a lambda with an empty capture clause

25

Lambda Expressions

● Parameter List
○ C++11

■ declarations for the arguments passed to the closure
■ default parameters were not permitted

○ C++14
■ parameters can have a data type of auto (generic lambda)
■ default parameters are supported

auto myLamb = [] (const std::string &data, uint max = 20)
 { return data.substr(0, max); };

26

Lambda Expressions

● Return Type Deduction
○ C++11

■ if you have more than one return statement you must
specify the return type

○ C++14
■ if there is more than one return statement they must deduce

to the exact same data type or it must be specified

auto myLamb = [] (bool sloppy) -> double {
 if (sloppy) { return 3; }

 return 3.14;
 };

27

Lambda Expressions

● Full Syntax as of C++20
○ template parameters

■ added in C++20
■ same syntax used with a template function or method

○ these are equivalent
■ (auto && . . . args)
■ <typename . . . Ts>(Ts && . . . args)

28

[capture clause] <template parameters> (parameter list)
 specifier exception attribute -> return type requires { body }

Lambda Expressions

● Full Syntax as of C++20
○ specifier

■ mutable (C++11)
■ constexpr (C++17)

● constexpr can usually be deduced so this keyword is optional
■ consteval (C++20)

29

[capture clause] <template parameters> (parameter list)
 specifier exception attribute -> return type requires { body }

Lambda Expressions

● Full Syntax as of C++20
○ exception

■ noexcept
■ throw

● deprecated in C++11

30

[capture clause] <template parameters> (parameter list)
 specifier exception attribute -> return type requires { body }

Lambda Expressions

● Full Syntax as of C++20
○ attribute

■ functions can have attributes before the return type
● nodiscard, deprecated, noreturn

■ not available for a lambda expression, pending proposal

■ function type attributes appear at the end of the declaration
● gnu::cdecl, gnu::regcall

■ modifies the signature

31

[capture clause] <template parameters> (parameter list)
 specifier exception attribute -> return type requires { body }

Lambda Expressions

● Full Syntax as of C++20
○ requires

■ adds a constraint on . . .
● capture clause
● template parameters
● arguments passed in the parameter list
● anything which can be checked at compile time

■ example: requires std::copyable<T>

32

[capture clause] <template parameters> (parameter list)
 specifier exception attribute -> return type requires { body }

Lambda Expressions

● What is the Big Deal
○ lambda expressions . . .

■ code is typically easier to read
■ more convenient to write than a function object
■ can be invoked immediately, not saved to a variable
■ pass to another function or method using std::function
■ pass to a template using type deduction
■ works nicely with std::visit(), std::thread, and algorithms

33

Lambda Expressions

● What is the Big Deal
○ code you write

■ lambda expression defines a function object

○ compiler
■ your lambda expression is used to generate an internal

function object data type

○ run time
■ constructor in the function object data type is called,

produces a closure

34

Lambda Expressions

● Callback
○ Computer Science

■ block of executable code which is passed as an argument to
some other code

○ C Language
■ function pointer

● passed to another function as an argument

○ C++
■ function pointer, function object, or a closure

● passed to another function or method as an argument

35

Lambda Expressions

● Using a Callback with STL Algorithms (1)
○ std::count_if

■ returns the number of integers in the vector whose value is > 5

std::vector<int> data{ 1, 15, 3, 9, 11 };

// example A - passing a free function as a function pointer
bool myCallback(int i) {
 return i > 5;
}

int resultA = std::count_if(data.begin(), data.end(), &myCallback);

// example B - using a lambda expression
int resultB = std::count_if(data.begin(), data.end(), [](int i){ return i > 5;});

36

Lambda Expressions

● Using a Callback with STL Algorithms (2)
○ std::count_if

■ returns the number of strings in the vector which start with
the character ch

int count_str_starting_with(const std::vector<std::string> &data, char ch)
{
 return std::count_if(data.begin(), data.end(),
 [ch](const std::string &str) { return ! str.empty() && str[0] == ch; });
}

37

Lambda Expressions

● Example 5
○ how do you capture std::unique_ptr in a lambda expression?

■ use a generalized lambda capture to “move capture”
■ capturing a move only type means the closure is move only

● myLamb can only be moved
● move only types are not copyable

std::unique_ptr<Widget> myPtr = std::make_unique<Widget>();

auto myLamb = [capturedPtr = std::move(myPtr)] ()
 { return capturedPtr->computeSize(); };

38

Lambda Expressions

● Example 6
○ declare a lambda expression
○ myLamb has an lvalue category since it has a name
○ received using a template or std::function

auto myLamb = [] (double data) { return int(data); };
doThingA(myLamb);
doThingB(myLamb);

template <typename T> // example A
void doThingA(T arg1);

void doThingB(std::function<int (double)> arg2) // example B

39

Lambda Expressions

● Example 7 (a)
○ std::map<Key, Value, Compare>
○ our struct will override the default Compare operation

struct MyCompare {
 bool operator()(const std::string &a, const std::string &b) const {
 return a.size() < b.size();
 }
};

std::map<std::string, int, MyCompare>
 myMapA = { {"orange", 45}, {"apple", 95},
 {"kiwi", 40}, {"grapefruit", 22} };

40

Lambda Expressions

● Example 7 (b)
○ our lambda expression will override the default Compare operation
○ passing the type for the Compare parameter is enough to default

construct our std::map

auto myLamb = [] (const std::string &a, const std::string &b)
 { return a.size() < b.size(); };

std::map<std::string, int, decltype(myLamb)>
 myMapB = { {"orange", 45}, {"apple", 95},
 {"kiwi", 40}, {"grapefruit", 22} };

41

Lambda Expressions

● Generic Lambda
○ added in C++14
○ data type for at least one parameter must be auto
○ when the lambda expression is compiled

■ internal code for the function call operator will be a template

○ quiz: which auto is the . . .
■ “function template argument deduction”
■ “auto type deduction”

auto myLamb = [] (auto var1, int var2) { return var1 + var2; }

42

Lambda Expressions

● Structured Bindings
○ structured bindings make it easier to access elements of

tuples, arrays, and other compound types

auto [x, y] = someFunction(); // line A
auto myLamb = [x] () { return x + 7; }; // line B

○ capturing a structured binding was deemed invalid according
to the standard, so line B does not compile as of C++17

○ workaround: use a generalized lambda capture [x = x]

○ resolved in C++20
○ gcc and MSVC both allow the capture
○ known issue, clang still reports an error and it should not

43

Lambda Expressions

● Summary
○ function object

■ class or struct which declares the operator() method
○ lambda expression

■ evaluated at run time and produces a function object
■ can be assigned to a named variable which stores the closure

○ key parts of a lambda expression
■ capture clause, parameter list, body
■ lifetime matters when capturing by reference

○ data type of the closure should be auto
○ generalized capture - capture by move
○ generic lambda - parameter list data type of auto or T

44

Presentations

❏ Why CopperSpice, Why DoxyPress
❏ Compile Time Counter
❏ Modern C++ Data Types (references)
❏ Modern C++ Data Types (value categories)
❏ Modern C++ Data Types (move semantics)
❏ CsString library (unicode)
❏ Multithreading in C++
❏ Multithreading using libGuarded
❏ Signals and Slots
❏ Templates in the Real World
❏ What’s in a Container
❏ Modern C++ Threads
❏ C++ Undefined Behavior
❏ Regular Expressions
❏ Type Traits
❏ C++ Tapas (typedef, forward declarations)
❏ C++ Tapas (typename, virtual, pure virtual)
❏ Overload Resolution
❏ Futures & Promises
❏ Thread Safety
❏ Constexpr Static Const 45

❏ When Your Codebase is Old Enough to Vote
❏ Sequencing, Linkage, Inheritance
❏ Evolution of Graphics Technology
❏ GPU, Pipeline, and the Vector Graphics API
❏ Declarations and Type Conversions
❏ C++ ISO Standard
❏ Inline Namespaces
❏ Lambdas in Action
❏ Any Optional
❏ Variant
❏ CsPaint Library
❏ Moving to C++17
❏ What is the C++ Standard Library
❏ Attributes
❏ Copy Elision
❏ Time Complexity
❏ Qualifiers

Please subscribe to our YouTube Channel
https://www.youtube.com/copperspice

Libraries

● CopperSpice
○ libraries for developing GUI applications

● CsPaint Library
○ standalone C++ library for rendering graphics on the GPU

● CsSignal Library
○ standalone thread aware signal/slot library

● CsString Library
○ standalone unicode aware string library

● CsLibGuarded
○ standalone multithreading library for shared data

46

Applications

● KitchenSink
○ contains 30 demos and links with almost every CopperSpice library

● Diamond
○ programmers editor which uses the CopperSpice libraries

● DoxyPress & DoxyPressApp
○ application for generating source code and API documentation

47

Where to find CopperSpice

● www.copperspice.com
● twitter: @copperspice_cpp

● ansel@copperspice.com
● barbara@copperspice.com

● source, binaries, documentation files
○ download.copperspice.com

● source code repository
○ github.com/copperspice

● discussion
○ forum.copperspice.com

48

