Back to Basics
Lambda Expressions

Barbara Geller & Ansel Sermersheim
CppCon September 2020

Introduction

Prologue

History

Function Pointer
Function Object
Definition of a Lambda Expression
Capture Clause
Generalized Capture
This

Full Syntax as of C++20
What is the Big Deal
Generic Lambda

e C(Credentials

O O O O O

o O

every library and application is open source
development using cutting edge C++ technology
source code hosted on github

prebuilt binaries are available on our download site
all documentation is generated by DoxyPress

youtube channel with over 50 videos

frequent speakers at multiple conferences

m CppCon, CppNow, emBO++, MeetingC++, code::dive
numerous presentations for C++ user groups

m United States, Germany, Netherlands, England

e Maintainers and Co-Founders

O

CopperSpice
m cross platform C++ libraries

DoxyPress
m documentation generator for C++ and other languages

CsString
m support for UTF-8 and UTF-16, extensible to other encodings

CsSignal
m thread aware signal / slot library

CsLibGuarded
m library for managing access to data shared between threads

Lambda Expressions

e History
o lambda calculus is a branch of mathematics
m introduced in the 1930’s to prove if “something” can be solved
m used to construct a model where all functions are anonymous

m some of the first items lambda calculus was used to address
e if a sequence of steps can be defined which solves a problem,
then can a program be written which implements the steps
o yes, always
e can any computer hardware simulate any other computer
o yes, given sufficient time and memory

m languages which were influenced by lambda calculus
e Haskell, LISP, and ML

Lambda Expressions

e History
o why do we use the terminology lambda expression
m greek letter A refers to an anonymous function
m lambda - chosen since it is equated with something nameless
m expression - required since the code can be evaluated and will
return a value

o fundamental definition in C++
m an expression which returns a function object

o lambda expressions are in many computer languages
m C++, C#, Groovy, Java, Python, Ruby

Lambda Expressions

e Function Pointer

data type

pointer to any function

signature of the function must match the declaration of the pointer
invoked by the pointer name just like a normal function call

a function pointer is not dereferenced

O O O O O

O usage:
m callback function
m an argument to another function

Lambda Expressions

e Example 1

o myProcess is a function pointer, where this pointer can only point
to a function with a parameter of int and return type of void
o std::exit is a function

m nhame of a function implicitly converts to a function pointer

#include <cstdlib>

void (*myProcess)(int); // declaration of the pointer
myProcess = std::exit;

myProcess(42); // calls std::exit

Lambda Expressions

e Operator Overloading
o any method which starts with “operator” followed by a symbol,
are called overloaded operators
m bool operator==(const T &value)
m bool operator>(const T &value)
m T operator+=(const T &value)

o any method with the exact name “operator()” is called the
function call operator
m void operator()()
m bool operator()(int value)
m double operator()(double d1, double d2)

Lambda Expressions

e Function Object
o function object data type
m class or structure with a function call operator method

o function object
m an instance of a function object data type
m a callable object

o a function object is called using normal function syntax

m can receive parameters
m has a return type

10

Lambda Expressions

e Example 2
o create a class named Ginger
m contains a method named operator()
m Ginger is a function object data type

o usage A and usage B do the exact same thing

class Ginger {
void operator()(std::string str);

},

Ginger widget;
widget.operator()(“hello”); // line A
widget(“hello”); // line B

11

Lambda Expressions

e Avoid using the term Functor
o in mathematical terms it is a function which
m takes one or more functions as its arguments
m returns a function as the result

o functor is also defined in mathematical category theory

o functional programming
m defines it as a function which performs mapping operations

o when C++ developers uses the word “functor” they usually are
referring to a function object or a function object data type

12

Lambda Expressions

e Terminology Review
o functor
m please use “function object” if that is what you mean

o function pointer
m pointer which refers to a function rather than pointing to data

o function object data type
m class which declares the operator()() method

o function object
m instance of a function object data type

o std::function
m container, holds a single function pointer or a function object

13

Lambda Expressions

e Definition of a Lambda Expression
o first introduced in C++11

o syntax for a lambda expression consists of specific punctuation

s [1 O {}

o key elements
m [capture clause] (parameter list) -> return type { body }

o a lambda expression . . .

m assignable to a variable whose data type is usually auto
m defines a function object

14

Lambda Expressions

e Definition of a Lambda Expression
o capture clause
m variables which are visible in the body
m capture can happen by value or reference
m can be empty

o parameter list
m can be empty or omitted

o return type
m data type returned by the body, optional, normally deduced

o body
m contains the programming statements to execute

m can be empty
15

Lambda Expressions

e Example 3
o x is captured from the outer scope
o nothing in the parameter list
o quiz: what value is printed

int main()

{
int x = 42;
auto myLamb = [x] ()
{
cout << "Hello from a lambda expression, value = " << x << endl;
i
X =17,
myLamb();

} 16

Lambda Expressions

e Example 4
o x is captured from the outer scope
o nothing in the parameter list
o quiz: what value is printed

int main()

{
int x = 42;
auto myLamb = [&x] ()
{
cout << "Hello from a lambda expression, value = " << x << endl;
i
X =17,
myLamb();

; 17

Lambda Expressions

e Picky Details
o everything to the right of the equal sign is the lambda expression
o result of this expression is assigned to our variable
m expression is first evaluated
m then myLamb is initialized
o give some thought to your variable name

o a closure is simply a function object . . .
m Wwhich is returned from the evaluation of a lambda expression
m mylLamb contains the closure
m deduced type is a “closure data type”

auto myLamb = [] () { return 17; };
18

Lambda Expressions

e (Capture Clause
o by value

capture is by const value

only variables in the local scope or “this” can be captured
x will be copied into the function object

capture occurs when the lambda expression is evaluated
original variable does not need to stay alive

if any captured value will be modified in the body, the lambda
expression must be declared mutable

auto myLamb = [x] () mutable { return ++x; };

19

Lambda Expressions

e (Capture Clause
o by reference
m an & is added to indicate capture by lvalue reference
m it is not valid to capture by rvalue reference

m capture occurs when the lambda expression is evaluated
m ensure captured lvalue references remain alive for the entire
lifetime of the closure

auto myLamb = [&x] () { return ++x; };

20

Lambda Expressions

e (Capture Clause
o C++11
m capture by value or reference

o C++14
m generalized capture was added

21

Lambda Expressions

e (Capture Clause
o generalized capture

m capture is initialized by value
e [varA =10]
e [varB = x]

m capture is initialized by reference
e [&varC =Yy]
e Yy must be declared in the local scope

m capture is initialized by move
e [varD = std::move(z)]
e move occurs when the lambda expression is evaluated

22

Lambda Expressions

e (Capture Clause
o C++11
m [this]
m captures this pointer by value

o C++14
m [self = *this]
m capture *this object by value, initializes a new variable

o C++17
m [*this]
m capture *this object by value

23

Lambda Expressions

e (Capture Clause

©)
©)

default capture by value
captures all variables used in the body of the lambda expression
m auto myLamb = [=] () { return x + m_data; };

default capture by reference
captures all variables used in the body of the lambda expression
m auto myLamb = [&] () { return x + m_data; };

starting with C++20
m default capture of this pointer by value has been deprecated

24

Lambda Expressions

e (Capture Clause
o C++ standard defines the result of evaluating a lambda expression
which does not capture anything as a special kind of closure

special closure has no state so it can be implicitly converted
to a function pointer

if you are calling a C function which wants a function pointer,
you can pass a lambda with an empty capture clause

25

Lambda Expressions

e Parameter List
o C++11
m declarations for the arguments passed to the closure
m default parameters were not permitted

o C++14
m parameters can have a data type of auto (generic lambda)
m default parameters are supported

auto myLamb = [] (const std::string &data, uint max = 20)
{ return data.substr(0, max); };

26

Lambda Expressions

e Return Type Deduction
o C++11
m if you have more than one return statement you must
specify the return type

o C++14
m if there is more than one return statement they must deduce
to the exact same data type or it must be specified

auto myLamb = [] (bool sloppy) -> double {
if (sloppy) { return 3; }

return 3.14;

H
27

Lambda Expressions

e Full Syntax as of C++20

o template parameters
m added in C++20
m same syntax used with a template function or method

o these are equivalent
m (auto && . . . args)
m <typename . . . Ts>(Ts && . . . args)

[capture clause] <template parameters> (parameter 1list)
specifier exception attribute -> return type requires { body }

28

Lambda Expressions

e Full Syntax as of C++20
o specifier
m mutable (C++11)

m constexpr (C++17)
e constexpr can usually be deduced so this keyword is optional

m consteval (C++20)

[capture clause] <template parameters> (parameter list)
specifier exception attribute -> return type requires { body }

29

Lambda Expressions

e Full Syntax as of C++20
o exception
m hoexcept

m throw
e deprecated in C++11

[capture clause] <template parameters> (parameter list)
specifier exception attribute -> return type requires { body }

30

Lambda Expressions

e Full Syntax as of C++20
o attribute

m functions can have attributes before the return type
e nodiscard, deprecated, noreturn

m nhot available for a lambda expression, pending proposal

m function type attributes appear at the end of the declaration
e gnu::cdecl, gnu::regcall
m modifies the signature

[capture clause] <template parameters> (parameter list)
specifier exception attribute -> return type requires { body }

31

Lambda Expressions

e Full Syntax as of C++20
o requires
m adds a constrainton. ..
e capture clause
e template parameters
e arguments passed in the parameter list
e anything which can be checked at compile time

m example: requires std::copyable<T>

[capture clause] <template parameters> (parameter list)
specifier exception attribute -> return type requires { body }

32

Lambda Expressions

e What is the Big Deal

lambda expressions . . .

O

code is typically easier to read

more convenient to write than a function object

can be invoked immediately, not saved to a variable

pass to another function or method using std::function
pass to a template using type deduction

works nicely with std::visit(), std::thread, and algorithms

33

Lambda Expressions

e What is the Big Deal

o code you write
m lambda expression defines a function object

o compiler
m your lambda expression is used to generate an internal
function object data type

o run time

m constructor in the function object data type is called,
produces a closure

34

Lambda Expressions

e Callback

o Computer Science
m block of executable code which is passed as an argument to
some other code

o C Language
m function pointer
e passed to another function as an argument

o C++

m function pointer, function object, or a closure
e passed to another function or method as an argument

35

Lambda Expressions

e Using a Callback with STL Algorithms (1)

o std::count_if
m returns the number of integers in the vector whose value is > 5

std: :vector<int> data{ 1, 15, 3, 9, 11 };
// example A - passing a free function as a function pointer

bool myCallback(int i) {
return 1 > 5;

}

int resultA = std::count_if(data.begin(), data.end(), &myCallback);

// example B - using a lambda expression
int resultB = std::count_if(data.begin(), data.end(), [](int i){ return i > 5;});

36

Lambda Expressions

e Using a Callback with STL Algorithms (2)

o std::count_if
m returns the number of strings in the vector which start with
the character ch

int count_str_starting_with(const std::vector<std::string> &data, char ch)

{
return std::count_if(data.begin(), data.end(),

[ch](const std::string &str) { return ! str.empty() && str[0] == ch; });

37

Lambda Expressions

e Example 5
o how do you capture std::unique_ptr in a lambda expression?

m use a generalized lambda capture to “move capture”

m capturing a move only type means the closure is move only
e myLamb can only be moved
e move only types are not copyable

std::unique_ptr<Widget> myPtr = std::make_unique<Widget>();
auto myLamb = [capturedPtr = std::move(myPtr) 1 ()

{ return capturedPtr->computeSize(); };

38

Lambda Expressions

e Example 6
o declare a lambda expression
o myLamb has an lvalue category since it has a name
o received using a template or std::function

auto myLamb = [] (double data) { return int(data); };
doThingA(myLamb);
doThingB(myLamb);

template <typename T> // example A
void doThingA(T argl);

volid doThingB(std: :function<int (double)> arg2) // example B

39

Lambda Expressions

e Example 7 (a)
o std::map<Key, Value, Compare>
o our struct will override the default Compare operation

struct MyCompare {
bool operator()(const std::string &a, const std::string &b) const {
return a.size() < b.size();
}
}i

std: :map<std::string, int, MyCompare>
myMapA = { {"orange", 45}, {"apple", 95},
{"kiwi", 40}, {"grapefruit", 22} };

40

Lambda Expressions

e Example 7 (b)
o our lambda expression will override the default Compare operation
o passing the type for the Compare parameter is enough to default
construct our std::map

auto myLamb = [] (const std::string &a, const std::string &b)
{ return a.size() < b.size(); };

std: :map<std::string, int, decltype(myLamb)>
myMapB = { {"orange", 45}, {"apple", 95},
{"kiwi", 40}, {"grapefruit", 22} };

41

Lambda Expressions

e Generic Lambda
o added in C++14
o data type for at least one parameter must be auto
o when the lambda expression is compiled
m internal code for the function call operator will be a template

o quiz: which auto is the . . .
m “function template argument deduction”
m “auto type deduction”

auto myLamb = [] (auto var1, int var2) { return varl + var2; }

42

Lambda Expressions

e Structured Bindings
o structured bindings make it easier to access elements of
tuples, arrays, and other compound types

auto [x, y] = someFunction(); // line A
auto myLamb = [x] () { return x + 7; }; // line B

o capturing a structured binding was deemed invalid according
to the standard, so line B does not compile as of C++17
o workaround: use a generalized lambda capture [x = X]

o resolved in C++20
o gcc and MSVC both allow the capture

o known issue, clang still reports an error and it should not
43

Lambda Expressions

e Summary
o function object
m class or struct which declares the operator() method

o lambda expression
m evaluated at run time and produces a function object
m can be assighed to a named variable which stores the closure

o key parts of a lambda expression
m capture clause, parameter list, body
m lifetime matters when capturing by reference

o data type of the closure should be auto
o generalized capture - capture by move

o generic lambda - parameter list data type of auto or T
44

Presentations

I Iy By Iy Iy iy iy I Iy Wy W)y Wy W

Why CopperSpice, Why DoxyPress
Compile Time Counter

Modern C++ Data Types (references)
Modern C++ Data Types (value categories)
Modern C++ Data Types (move semantics)
CsString library (unicode)

Multithreading in C++

Multithreading using libGuarded

Signals and Slots

Templates in the Real World

What’s in a Container

Modern C++ Threads

C++ Undefined Behavior

Regular Expressions

Type Traits

C++ Tapas (typedef, forward declarations)
C++ Tapas (typename, virtual, pure virtual)
Overload Resolution

Futures & Promises

Thread Safety

Constexpr Static Const

ENEE NN EREREREY EY RN Ny Ny EY EY Ry Ry R

When Your Codebase is Old Enough to Vote
Sequencing, Linkage, Inheritance
Evolution of Graphics Technology

GPU, Pipeline, and the Vector Graphics API
Declarations and Type Conversions

C++ ISO Standard

Inline Namespaces

Lambdas in Action

Any Optional

Variant

CsPaint Library

Moving to C++17

What is the C++ Standard Library
Attributes

Copy Elision

Time Complexity

Qualifiers

Please subscribe to our YouTube Channel
https://www.youtube.com/copperspice 45

e CopperSpice

o libraries for developing GUI applications

e (sPaint Library
o standalone C++ library for rendering graphics on the GPU

e (sSignal Library

o standalone thread aware signal/slot library

e (sString Library

o standalone unicode aware string library

e (CsLibGuarded

o standalone multithreading library for shared data

46

Applications

e KitchenSink
o contains 30 demos and links with almost every CopperSpice library

e Diamond
o programmers editor which uses the CopperSpice libraries

e DoxyPress & DoxyPressApp

o application for generating source code and APl documentation

47

Where to find CopperSpice

® WwWw.copperspice.com
e twitter: @copperspice_cpp

e ansel@copperspice.com
e barbara@copperspice.com

e source, binaries, documentation files
o download.copperspice.com

e source code repository
o github.com/copperspice

e discussion
o forum.copperspice.com

48

