
Multithreading Using
Lockless Lists and RCU

Ansel Sermersheim
CppNow - May 2017

1

Introduction

● Multithreading revisited
● A better way
● Containers + Destructors = Deadlocks
● Introducing a new solution: RCU
● Putting it all together

2

Multithreading Revisited

● Part I

3

Multithreading Revisited

// example 1 - any issues?

ComplicatedObject * createObject(int param1, double param2) {
 ComplicatedObject * retval;

 retval = new ComplicatedObject();
 retval->doSomething(param1);
 retval->somethingElse(param2);

 return retval;
}

4

Multithreading Revisited

// example 2 - any issues?

class MyCache {
 public:
 void insert(std::string key, ComplicatedObject * element);
 ComplicatedObject * lookup(std::string key) const;

 private:
 std::map<std::string, ComplicatedObject *> m_cache;
 std::shared_timed_mutex m_cacheMutex;
};

ComplicatedObject * MyCache::lookup(std::string key) {
 std::shared_lock<std::shared_timed_mutex> lock(m_cacheMutex);

 return m_cache[key];
} 5

Multithreading Revisited

● Problems with example 2
○ returns a raw ptr, who is responsible for deleting it

○ what if someone else deletes the object

○ what if I delete the object but I do not remove it
from the std::map

○ if the key is not found in the map, a reference to the
mapped value with a nullptr is inserted in the map
■ undefined behavior since the lock is a “read” lock

6

A Better Way . . .

● Part II

7

A Better Way . . .

● class guarded<T>

8

class guarded<T> (1 of 4)

template <typename T, typename M = std::mutex>
class guarded {
 public:
 using handle = std::unique_ptr<T, deleter>;

 template <typename... Us>
 guarded(Us &&... data);

 handle lock();
 handle try_lock();

 template <class Duration>
 handle try_lock_for(const Duration & duration);
 template <class TimePoint>
 handle try_lock_until(const TimePoint & timepoint);

 private:
 T m_obj;
 M m_mutex;
}; 9

class guarded<T> (2 of 4)

template <typename T, typename M>
template <typename... Us>
guarded<T, M>::guarded(Us &&... data) : m_obj(std::forward<Us>(data)...)
{
}

template <typename T, typename M>
auto guarded<T, M>::lock() -> handle
{
 std::unique_lock<M> lock(m_mutex);
 return handle(&m_obj, deleter(std::move(lock)));
}

10

class guarded<T> (3 of 4)

template <typename T, typename M>
auto guarded<T, M>::try_lock() -> handle
{
 std::unique_lock<M> lock(m_mutex, std::try_to_lock);

 if (lock.owns_lock()) {
 return handle(&m_obj, deleter(std::move(lock)));
 } else {
 return handle(nullptr, deleter(std::move(lock)));
 }
}

11

class guarded<T> (4 of 4)

class deleter
{
 public:
 using pointer = T *;

 deleter(std::unique_lock<M> lock) : m_lock(std::move(lock))
 {
 }

 void operator()(T * ptr) {
 if (m_lock.owns_lock()) {
 m_lock.unlock();
 }
 }

 private:
 std::unique_lock<M> m_lock;
};

12

A Better Way . . . Recap

● class guarded<T>
○ exclusive locks
○ C++11

● class shared_guarded<T>
○ exclusive locks
○ shared locks
○ C++14 or boost::thread

● class ordered_guarded<T>
○ shared locks
○ blocking modifications to shared data (via lambda)
○ C++14 or boost::thread

13

A Better Way . . . Recap

● class deferred_guarded<T>
○ shared locks
○ nonblocking modifications to data (via lambda)
○ deadlock free eventual consistency
○ C++14 or boost::thread

● class lr_guarded<T>
○ shared access without locks
○ blocking modifications to data (via lambda)
○ readers block writers
○ readers never see data older than the previous write
○ C++11

14

A Better Way . . . Recap

● class cow_guarded<T>
○ shared access without locks
○ blocking modifications to data (via lambda)
○ only other writers can block writers
○ readers see a snapshot of data
○ unwanted modifications can be discarded
○ C++11

15

Example 2 Revisited -- Using shared_guarded<T>

class MyCache {
 public:
 void insert(std::string key, std::shared_ptr<ComplicatedObject> element);
 std::shared_ptr<ComplicatedObject> lookup(std::string key) const;

 private:
 shared_guarded<std::map<std::string,
 std::shared_ptr<ComplicatedObject>>> m_cache;
};

std::shared_ptr<ComplicatedObject> MyCache::lookup(std::string key) {
 auto handle = m_cache.lock_shared();
 auto iter = handle->find(key);

 if (iter != handle->end()) {
return iter->second;

 }
 return nullptr;
}

16

Example 2 Revisited -- Using shared_guarded<T>

// any issues?

void MyCache::insert(std::string key, std::shared_ptr<ComplicatedObject> element)
{
 auto handle = m_cache->lock();
 handle->emplace(key, element);
}

17

Example 2 Revisited -- Using ordered_guarded<T>

// any issues?

void MyCache::insert(std::string key, std::shared_ptr<ComplicatedObject> element)
{
 m_cache.modify(
 [&key, &element]
 (std::map<std::string, std::shared_ptr<ComplicatedObject>> & map)
 {
 map.emplace(key, element);
 });
}

18

Example 2 Revisited -- Using deferred_guarded<T>

// any issues?

void MyCache::insert(std::string key, std::shared_ptr<ComplicatedObject> element)
{
 m_cache.modify_detach(
 [k = std::move(key), e = std::move(element)]
 (std::map<std::string, std::shared_ptr<ComplicatedObject>> & map)
 {
 map.emplace(k, e);
 });
}

19

Example 2 Revisited -- Using lr_guarded<T>

// any issues?

void MyCache::insert(std::string key, std::shared_ptr<ComplicatedObject> element)
{
 m_cache.modify(
 [&key, &element]
 (std::map<std::string, std::shared_ptr<ComplicatedObject>> & map)
 {
 map.emplace(key, element);
 });
}

20

Example 2 Revisited -- Using cow_guarded<T>

// any issues?

void MyCache::insert(std::string key, std::shared_ptr<ComplicatedObject> element)
{
 auto handle = m_cache->lock();
 handle->emplace(key, element);
}

21

Example 3

class MyCache {
 public:
 std::shared_ptr<ComplicatedObject> lookup(std::string key) const;

 void insert(std::string key, std::shared_ptr<ComplicatedObject> element);
 void insert_batch(std::map<std::string, std::shared_ptr<ComplicatedObject>>);

 private:
 // must be called with m_cacheMutex held

void internal_insert(std::string key, std::shared_ptr<ComplicatedObject> e);

 std::map<std::string, ComplicatedObject *> m_cache;
 std::shared_timed_mutex m_cacheMutex;
};

22

Example 3 Revisited -- using deferred_guarded<T>

class MyCache {
 public:
 std::shared_ptr<ComplicatedObject> lookup(std::string key) const;

 void insert(std::string key, std::shared_ptr<ComplicatedObject> element);
 void insert_batch(std::map<std::string, std::shared_ptr<ComplicatedObject>>);

 private:
using shared_handle = deferred_guarded<std::map<std::string,

 std::shared_ptr<ComplicatedObject>>>::shared_handle;

 void internal_insert(std::string key, std::shared_ptr<ComplicatedObject> e,
 shared_handle & cache);

 deferred_guarded<std::map<std::string,
 std::shared_ptr<ComplicatedObject>>> m_cache;
};

23

Example 3 Revisited -- using deferred_guarded<T>

● Instead of writing code
○ class MyCache does not need to be implemented as a class

using MyCache = deferred_guarded<std::map<
 std::string, std::shared_ptr<ComplicatedObject>>>;

24

Containers + Destructor = Deadlocks

● Part III

25

Containers + Destructor = Deadlocks

● May 2016
○ libGuarded library release 1.0.0

● June 2016
○ medical leave (aftermarket knee installation)

● Jan 2017
○ integrated libGuarded with CsSignal library
○ ran thread sanitizer and it reported a deadlock
○ libGuarded 1.0.0 was supposed to prevent threading issues
○ now what?

26

Containers + Destructor = Deadlocks

● Real world issue from CsSignal Library
○ each connection involves one sender object and

one receiver object
○ example: a pushButton is connected to a window
○ signal: PushButton::clicked() slot: Window::close()

○ each sender of a signal has a connection list
■ pushButton destructor must update each receiver

○ each receiver of a signal has a sender list
■ window destructor must update each sender

27

Containers + Destructor = Deadlocks

● Real world issue from CsSignal Library
○ what order should these containers be locked

■ lock the sender’s connection list
■ lock the receiver’s sender list

○ pushButton destructor must:
■ read its own connection list to find receivers
■ write to each receiver’s sender list

○ window destructor must:
■ read its own sender list to find senders
■ write to each sender’s connection list

28

Containers + Destructor = Deadlocks

● Possible solutions, not really
○ ignore this problem (ostrich algorithm)
○ wait until the destructors work it out
○ try_lock()
○ alternating lock / unlock until someone wins
○ check for this deadlock and assert()
○ mark unit test flaky so your CI does not fail
○ never run thread sanitizer

29

Containers + Destructor = Deadlocks

● Possible solutions
○ CsSignal library was designed to delegate responsibility

for thread management to libGuarded
○ valid for the pushButton and the window to both be

in their respective destructors concurrently
○ the solution to this deadlock needs to be a change in

libGuarded and not in CsSignal

30

Containers + Destructor = Deadlocks

● What can be added to libGuarded
○ what we really want is a thread aware container
○ writers must not block readers
○ readers do not block at all
○ iterators are not invalidated by writers

31

Containers + Destructor = Deadlocks

● Feb 2017
○ add a new class to libGuarded to support the CsSignal

threading requirements

● March 2017
○ completed libGuarded 1.1.0 integration with CsSignal
○ thread sanitizer run on CsSignal, happy

32

Containers + Destructor = Deadlocks

● CsSignal library, before libGuarded
CsSignal::SignalBase::~SignalBase()
{
 std::lock_guard<std::mutex> lock(m_mutex_connectList);

 if (m_activateBusy > 0) {
 std::lock_guard<std::mutex> lock(get_mutex_beingDestroyed());
 get_beingDestroyed().insert(this);
 }

 for (auto & item : m_connectList) {
 const SlotBase * receiver = item.receiver;

 std::lock_guard<std::mutex> lock{receiver->m_mutex_possibleSenders};

 auto &senderList = receiver->m_possibleSenders;
 senderList.erase(std::remove_if(senderList.begin(), senderList.end(),
 [this](const SignalBase * x){ return x == this; }),
 senderList.end());
 }
} 33

Containers + Destructor = Deadlocks

● CsSignal Library, after libGuarded
CsSignal::SignalBase::~SignalBase()
{
 auto senderListHandle = m_connectList.lock_read();

 for (auto & item : * senderListHandle) {
 auto receiverListHandle = item.receiver->m_possibleSenders.lock_write();
 auto iter = receiverListHandle->begin();

 while (iter != receiverListHandle->end()) {

 if (*iter == this) {
 iter = receiverListHandle->erase(iter);

 } else {
 ++iter;

 }
 }
 }
}

34

Introducing a new solution: RCU

● Part IV

35

Introducing a new solution: RCU

● What is RCU?
○ RCU stands for “Read, Copy, Update”
○ a published algorithm for a multithreaded linked list
○ only one writer at a time
○ multiple concurrent readers
○ readers are lockless
○ readers do not block writers

36

Introducing a new solution: RCU

● How does RCU work?
○ defined procedure for modifying a list node

■ read current node
■ make a copy of the node
■ update pointers so all subsequent readers see

only the new node (nodes are not deleted at this step)
■ wait until “later”
■ delete the old node

37

Introducing a new solution: RCU

● Example of RCU - In the linux kernel
○ the concept of “later” as defined in the kernel

■ each CPU goes through a step called a “grace period”
■ references to an RCU list can not be held during a

grace period
■ while reading, a thread must never sleep or block
■ since there is a fixed number of CPUs, there is a limit

on how many readers can exist
■ writer waits for all CPUs to execute a grace period,

then it is safe to delete the old node

38

Introducing a new solution: RCU

● Example of RCU - In the linux kernel libGuarded
○ the concept of “later” as defined in the kernel

■ each CPU goes through a step called a “grace period”
■ references to an RCU list can not be held during a

grace period
■ while reading, a thread must never sleep or block
■ since there is a fixed number of CPUs, there is a limit

on how many readers can exist

39

Introducing a new solution: RCU

● So what is RCU in a C++ library?
○ why defining “later” is complicated

■ there is no concept of a grace period
■ references may be held for a long time
■ references may be held while sleeping or blocking
■ number of threads currently running is dynamic
■ making writers block until readers finish is undesirable

● Is there a way to implement the RCU technique
in a C++ library?

40

Introducing a new solution: RCU

● rcu_guarded<rcu_list<T, A>>
○ wrapper which controls access to the RCU container

● rcu_list<T, A>
○ container which implements the RCU algorithm

41

Introducing a new solution: RCU

● rcu_guarded public API
○ const method, nonblocking, returns a const read_handle

■ lock_read()

○ non-const method, exclusive lock, returns a write_handle
■ lock_write()

42

Introducing a new solution: RCU

● rcu_list public API
○ const methods accessible to readers

■ begin(), end()

○ non-const methods accessible to writers
■ insert(), erase(), push_back(), etc

43

Introducing a new solution: RCU

● rcu_list<T>::insert()
○ allocate new node
○ update new node’s next and prev pointers
○ update prev node’s next pointer
○ update next node’s prev pointer

○ concurrent readers will either see the new node or not
○ corner cases, when inserting at head or tail
○ pointers must be updated atomically

44

Introducing a new solution: RCU

● rcu_list<T>::erase()
○ update prev->next and next->prev to skip over this node
○ mark this node deleted
○ add this node to the head of a special internal list

○ concurrent readers will either see the old node or not
○ corner cases, when erasing the head or tail
○ pointers must be updated atomically

45

Introducing a new solution: RCU

● The special internal list - zombie list
○ (single) linked list
○ used to track when a node in rcu_list has been erased

■ zombie_node
○ used to track when a read handle to rcu_list was requested

■ read_in_process

struct zombie_list_node {
 ...
 std::atomic<zombie_list_node *> next;

 node * zombie_node;
 std::atomic<rcu_guard *> read_in_process;
};

46

Introducing a new solution: RCU

● Zombie list maintenance
○ when a read handle is requested rcu_guard adds an entry

to the zombie list (for reference this is spot c)

○ when the reader completes rcu_guard begins walking
from this entry (spot c) in an attempt to clean up the
zombie list

○ if the end of the zombie list is reached before another
reader type entry, then every zombie from (spot c) to the
end of the list is safe to delete

○ if another reader type entry is found, the reader entry
(spot c) is removed and no other action is taken

47

Introducing a new solution: RCU

● Additional aspects of rcu_list
○ read_lock() returns a read handle to the rcu_list
○ a read handle can be used to retrieve an iterator
○ this iterator will be valid as long as the read handle

is in scope

○ normally erasing an element of a list would invalidate
iterators to that element

48

Introducing a new solution: RCU

● Additional aspects of rcu_list
○ no synchronization between readers so modifying an

element directly can result in a race condition
■ to prevent this race condition all iterators are const

○ data in a list which is mutable can be modified by
a reader even though the iterator is const
■ readers typically should not modify data
■ mutable data should be atomic if possible

○ to modify data in an rcu_list use insert() and erase()

49

Introducing a new solution: RCU

● Difference between linux RCU and libGuarded RCU
○ linux RCU readers have very little cost
○ libGuarded requires memory allocation for each read handle
○ libGuarded requires cleanup each time a reader completes

○ linux RCU writers wait for readers to finish
○ libGuarded writers do not need to wait

○ linux RCU is optimized for read speed, write performance
can be poor

○ libGuarded RCU is designed for nonblocking operations

50

Introducing a new solution: RCU

● libGuarded 1.2.0
○ rcu_list::replace()
○ rcu_list::update()
○ read_handle::unlock()
○ write_handle::unlock()

○ add associative containers

51

Putting it all Together

● Part V

52

Putting it all Together

● Piece by piece
○ developing CopperSpice proved we needed to design a

standalone Signal / Slot library (CsSignal)
○ deadlocks in CsSignal demanded a threading library
○ unable to document CopperSpice we created DoxyPress

and switched parsing from lex to clang for C++
○ mangled text required a Unicode aware string library

○ CsSignal uses libGuarded
○ CopperSpice uses CsSignal and CsString
○ DoxyPress uses CopperSpice

53

Future Plans

● CsString
○ add ISO-8859-1 encoding (maybe others)
○ implement small string optimization
○ add locale aware comparison using Unicode algorithms
○ add normalization functions

● libGuarded
○ add associative containers
○ add lock free containers

54

Future Plans

● CopperSpice
○ complete QString8 and QString16
○ redesign QMap and QHash leveraging the STL
○ optimize QVariant
○ lambda based indexOf and lastIndexOf, all container classes
○ MSVC using clang front end

● CsSignal
○ improve move semantics

55

Future Plans

● DoxyPress
○ add parsing support for clang 3.8 and clang 3.9
○ optimize clang integration used in parsing
○ refactor comment parser
○ improve unicode support

56

Libraries & Applications

● CopperSpice
○ libraries for developing GUI applications

● PepperMill
○ converts Qt headers to CS standard C++ header files

● CsSignal Library
○ thread aware signal / slot library

● CsString Library
○ unicode aware string support library

● LibGuarded
○ multithreading library for shared data

57

Libraries & Applications

● KitchenSink
○ one program which contains 30 demos
○ links with almost every CopperSpice library

● Diamond
○ programmers editor which uses the CS libraries

● DoxyPress & DoxyPressApp
○ application for generating documentation for a variety of

computer languages in numerous output formats

58

Where to find our libraries

● www.copperspice.com
● download.copperspice.com
● forum.copperspice.com

● ansel@copperspice.com
● barbara@copperspice.com

● Questions? Comments?

59

