
Multithreading is
the answer.

What is the question?
(part 1)

Ansel Sermersheim
CppNow - May 2016

1

Introduction

● What is multithreading
● Terminology
● Problems multithreading solves
● When is multithreading the answer?
● How to review multithreaded code

2

Introduction

● I have read the C++ standard, now what?

● Which flour do you use in a Toll House cookie?

○ bread flour, cake flour, all purpose flour

● Just slap a lock on it and call it done

3

What is Multithreading

● Bob is a seasoned C++ programmer

● Bob has a complex issue to solve

● Bob has always wanted to use multithreading

● Unfortunately, Bob now has N issues to solve
○ at least one race condition
○ a few memory leaks
○ and a random runtime crash which will only be

found by a high profile customer
4

What is Multithreading

● If you want to learn multithreading, find a problem
which actually requires a multithreaded solution

● Do not take your current problem and force
multithreading to be the solution

5

What is Multithreading

● Multithreading is the ability of a program to
execute multiple instructions at the same time

○ a mechanism by which a single set of code can be used
by several threads at different stages of execution

○ the ability to execute different parts of a program
simultaneously

○ Multithreading may be considered as concurrency if the
threads interact or parallelism if they do not

6

What is Multitasking

● Multitasking is the concept of performing multiple
tasks or processes over a certain period of time by
executing them concurrently

○ does not automatically imply multithreading

○ on a single processor system multitasking is
implemented by time slicing and the CPU switches
between different tasks

7

Multithreading - Myths

● Threading in a multiprocessor system results in concurrent
execution and makes a program faster

● Multithreading improves the stability of programs

● Since each thread is handled separately, if one thread has
an error, it does not affect the rest of the program

● A truly smart programmer will not have issues writing a
clean multithreading program

● Multithreading is hard

● Multithreading is easy

8

Terminology

● Thread
○ work which can be scheduled to execute on one core
○ a thread is contained inside a process
○ each thread has its own call stack

● Process
○ used to start a separate program
○ if there is only one thread in a process the program is

not multithreaded
○ as an example, you start Make then Make starts Clang,

Make starts a new process to run Clang
○ threads in the same process share most resources

9

Terminology

● Core

○ "core count" is the total number of instructions that can
be executed simultaneously

○ a computer may have multiple processors, each of which
might have multiple cores

○ a thread consumes an entire core while it is active

○ more cores does not mean your program will run faster

○ not all cores are equal

■ HyperThreading, NUMA, AMP

10

Terminology

● Cores in a practical system

○ we upgraded our CI machine to a CPU with 6 cores

● Why not buy a CPU with more cores
○ the next higher model of CPU has 8 cores

○ however the 8 core CPU has a slower clock speed

○ overall performance on the 8 core CPU is not as much of
an increase as expected and not worth the cost

11

Terminology

● Resource
○ computer memory location

○ file handle

○ non thread-safe C++ objects

● A resource must not be accessed by multiple
threads simultaneously

12

Terminology

● Race condition

○ occurs when a resource is accessed by multiple threads
simultaneously, and at least one access is a write

○ undefined behavior

13

Terminology

● Stack

○ is an area of memory used for data whose size is
determined at compile time

○ belongs to a specific thread

● Heap

○ an area of memory used for data which is allocated
at runtime

○ shared among all threads

14

Terminology

● Fibers
○ a “lightweight” thread
○ fibers are not scheduled by the OS, you have to make a

call to explicitly start and stop a fiber
○ current execution path is only interrupted when the

fiber yields execution
○ no two fibers can run at exactly the same time
○ can be difficult to use correctly since the OS is not in

charge of scheduling

● Not currently in C++
● Available in Boost.Fiber 15

Terminology

● Green Thread
○ a thread that is scheduled by a runtime library instead

of natively by the underlying operating system
○ used to emulate multithreading without OS support

● Not currently in C++
○ most operating systems support native threads

● Not widely used outside of
○ Java (older versions)
○ Erlang (sort of)
○ Go 16

Part II

Multithreading solves . . .

17

When to use Multithreading

● Problems for which multithreading is the answer

○ tasks which can intuitively be split into independent
processing steps

○ a problem where each step has a clear input and output

○ intensive computations

○ continuous access to a large read-only data set

○ processing a stream of large data files

18

When to use Multithreading

● Problems for which multithreading is the
only answer

○ tasks whose performance would be unacceptable as a
single thread

○ processes where the workload cannot be anticipated

○ manage concurrent access to multiple resources, such
as an operating system

○ external clients sending requests to a process in a
random and unpredictable fashion, such as PostgreSQL

19

When to use Multithreading

● Real life example
○ project: streaming video server

○ performance: the prototype was terrible

○ goal for production code: as fast as possible

■ assumed multithreading was the right path

■ performed a minor benchmark

■ the bottleneck turned out to be in the hardware

■ optimization was the correct solution not
multithreading 20

Matching Problems with Solutions

● What kind of ice cream maker do I need
○ for a small dinner party

○ for an ice cream shop

● Multithreading techniques in this talk apply to:
○ C++11 or later

○ two to twenty cores

○ desktop systems, mobile devices, cloudy things

21

Multithreading Analogy (A)

● Stage: A kitchen
○ two chefs

■ each chef will represent a thread
○ two knives

■ each knife is a local resource

● Requirement: make 50 fruit salads
● Solution: each chef will make 25 fruit salads

22

Threading Code (A)

std::thread chef1(
 []() {
 for(int i = 0; i < 25; ++i) {
 makeFruitSalad();
 }
 }
);

// same code as for chef one
std::thread chef2(...);

chef1.join();
chef2.join();

23

Multithreading Analogy (B)

● Stage: A kitchen
○ two chefs

■ each chef will represent a thread
○ two knives

■ each knife is a local resource
○ one oven

■ shared resource

● Requirement: make 50 apple pies
● Solution: each chef will independently make 25 apple pies

24

Threading Code (B)

Oven vikingOven;
std::mutex oven_mutex;

std::thread chef1([&oven_mutex, &vikingOven]()
 {
 for(int i = 0; i < 25; ++i) {
 Pie anotherPie;
 anotherPie.makeCrust();
 anotherPie.putApplesInPie();
 std::lock_guard<std::mutex> oven_lock(oven_mutex);
 vikingOven.bakePie(anotherPie, 375, 35);
 }
 }
);

std::thread chef2(...);

chef1.join();
chef2.join();

25

Multithreading Analogy (C)

● Stage: A kitchen
○ two chefs

■ each chef will represent a thread
○ two knives

■ each knife is a local resource
○ one oven

■ shared resource

● Requirement: make 50 apple pies
● Solution: one chef prepares pies, the second chef bakes the

pies in the oven

26

Threading Code (C-1)

Oven vikingOven;
threadsafe_queue<Pie> conveyorBelt;

std::thread chef1([&conveyorBelt]()
 {
 for(int i = 0; i < 50; ++i) {
 Pie anotherPie;
 anotherPie.makeCrust();
 anotherPie.putApplesInPie();

 // give the pie away
 conveyor_belt.queue(std::move(anotherPie));
 }
 }
);

27

Threading Code (C-2)

std::thread chef2([&conveyorBelt, &vikingOven]()
 {
 for(int i = 0; i < 50; ++i) {
 Pie anotherPie = conveyorBelt.dequeue();

 // bakePie method is blocking
 vikingOven.bakePie(anotherPie, 375, 35);
 }
 }
);

chef1.join();
chef2.join();

28

Threading Code (C)

● Can this design be optimized?

● Can these threads cause a deadlock?

● Are there any race conditions?

29

Multithreading Analogy (D)

● Stage: A kitchen

● Requirement: need 25 fruit salads and 25 chicken salads
● Solutions:

○ each chef independently makes a fruit salad, cleans up,
and then makes a chicken salad, 25 times

○ one chef makes only the 25 fruit salads while the other
chef makes only the 25 chicken salads

○ both chefs each make the 25 fruit salads tracking how
many were made in a shared data location
■ as soon as the fruit salads are finished they both

switch to making chicken salads 30

Multithreading Analogy (E)

● Stage: A kitchen
○ one oven, one brick pizza oven, one ice cream maker

■ shared resources

● Requirement:
○ anyone can randomly order pizza, garlic knots,

 apple pie, or ice cream

● Solution: pandemonium

31

Multithreading Analogy (E)

Oven vikingOven;
std::mutex vikingOven_mutex;

Oven brickOven;
std::mutex brickOven_mutex;

IceCreamMaker iceCreamMaker;
std::mutex iceCream_maker_mutex;

class Food { ... };

class Pizza { ... };
class GarlicKnots { ... };
class ApplePie { ... };
class IceCream { ... };

32

Multithreading Analogy (E)

void eat(Food && food) {
 std::cout << "Patron was served: " << food.name();
};

using PatronTicket = std::future<std::unique_ptr<Food>>;
using ChefTicket = std::promise<std::unique_ptr<Food>>;

33

Multithreading Analogy (E)

std::thread patron1([]() {
PatronTicket knots = orderGarlicKnots();
PatronTicket pizza = orderPizza();
PatronTicket iceCream = orderIceCream();

eat(knots.get());
eat(pizza.get());
eat(icecream.get());

});

std::thread patron2([]() {
PatronTicket iceCream = orderIceCream();
PatronTicket applePie = orderApplePie();

eat(iceCream.get());
eat(applePie.get());

});
34

Multithreading Analogy (E)

class Order { ... };
std::atomic<bool> restaurantOpen;
threadsafe_queue<Order> orderQueue;

std::thread chef1([&]() {
 while(restaurantOpen) {
 Order nextOrder = orderQueue.dequeue();

nextOrder.process();
 }
});

std::thread chef2([&]() {
 while(restaurantOpen) {
 Order nextOrder = orderQueue.dequeue();

nextOrder.process();
 }
});

35

Multithreading Analogy (E)

PatronTicket orderPizza() {
 std::shared_pointer<ChefTicket> chefTicket =
 std::make_shared<ChefTicket>();
 PatronTicket patronTicket = chefTicket->get_future();

 Order order{ [chefTicket]() {
 std::unique_ptr<Pizza> pizza = std::make_unique<Pizza>();
 pizza->addSauce();
 pizza->addCheese();
 std::lock_guard<std::mutex> lock(brickOven_mutex);
 pizza = brickOven.bake(std::move(pizza));
 chefTicket->set_value(std::move(pizza));
 }};

 orderQueue.queue(std::move(order));
 return patronTicket;
}

36

Multithreading Analogy (E) C++14

// changes to the lambda to move capture

PatronTicket orderPizza() {
 ChefTicket chefTicket;
 PatronTicket patronTicket = chefTicket->get_future();

 Order order{ [captureTicket = std::move(chefTicket)] () {

 . . .

 }

37

Multithreading Analogy (E)

● Items to consider about this example
○ single queue is not efficient

■ one queue per thread will improve performance
■ an idle thread can steal work from other queues, this

is called “work stealing” and is a common feature

○ a chef should not be waiting for a pizza to bake

○ locking should not be arbitrary
■ std::lock_guard<std::mutex> lock(brickOven_mutex);

■ there should be a better way ...

38

Miscellaneous threading advice

● Too many active threads
○ one active thread per core is ideal
○ move blocking calls to extra threads which can then

wait, without stalling the rest of the program

● Too much shared data
○ concentrate your efforts on reducing the number of

shared data structures
○ reduce the size of each shared data structure
○ reduction of shared data should drive the entire design
○ read-only shared data is much better than writable

shared data 39

Miscellaneous threading advice

● A race condition implies a write to shared data
○ no shared data means no race conditions
○ read-only shared data means no race conditions

40

Multithreading: There is a better way

● Please stay for my next talk...

41

Part III

Wrap Up

42

Libraries & Applications

● CopperSpice
○ libraries for developing GUI applications

● PepperMill
○ converts Qt headers to CS standard C++ header files

● CsSignal Library
○ new standalone thread aware signal / slot library

● LibGuarded
○ new standalone multithreading library for shared data

43

Libraries & Applications

● KitchenSink
○ one program which contains 30 demos

○ links with almost every CopperSpice library

● Diamond
○ programmers editor which uses the CS libraries

● DoxyPress & DoxyPressApp
○ application for generating documentation

44

Where to find these Projects

● www.copperspice.com
● download.copperspice.com
● forum.copperspice.com

● ansel@copperspice.com

● Questions? Comments?

45

