Undefined Behavior
Back To Basics

Barbara Geller & Ansel Sermersheim
CppCon - October 2021

Introduction

Prologue

Overview

Building a definition for Undefined Behavior
Definitions from the C++ Standard

Partial List of Common C++ Undefined Behavior
Undefined Behavior is Not an Error

When is Undefined Behavior Acceptable
Compiler Options

Resolving Undefined Behavior

Examples

e Co-Founders of the following projects

O

CopperSpice
m cross platform C++ GUI libraries

DoxyPress
m documentation generator for C++ and other languages

CsString
m support for UTF-8 and UTF-16, extensible to other encodings

CsSignal
m thread aware signal / slot library

CsLibGuarded
m library for managing access to data shared between threads

e C(Credentials

O O O O O

o O

every library and application is open source

projects are developed using cutting edge C++ technology
all source code hosted on github

prebuilt binaries available on our download site
documentation is generated by DoxyPress

youtube channel with videos focused mostly on C++
speakers at multiple conferences

m CppCon, CppNow, emBO++, MeetingC++, code::dive
numerous presentations for C++ user groups

m United States, Germany, Netherlands, England

Undefined Behavior

e Overview
o misconceptions about undefined behavior

undefined behavior will be found in a code review
debugging undefined behavior just takes a bit of practice
good testing will catch undefined behavior

they are working on get rid of undefined behavior in C++
better compilers will report undefined behavior as an error
experienced developers never have the bad undefined behavior

o what the standard says about undefined behavior

if your program has undefined behavior, it is not correct

Undefined Behavior

e Overview
o compiler developer

objective is to leverage every opportunity to optimize
undefined behavior is a fun theoretical discussion
understanding every aspect of undefined behavior is essential
overlooking undefined behavior can impact performance

o application developer

objective is to write code which has zero undefined behavior
undefined behavior can be a daunting, intimidating discussion
understanding how to avoid undefined behavior is mandatory
ignoring undefined behavior is dangerous

Undefined Behavior

e Example 1
o detailed description
m declares a vector of strings
m assigns values using an initializer list
m nhames.size() will return 5

o 1is there any undefined behavior?

std: :vector<std::string> names;
names = { “tiger”, “horse”, "“ostrich”, *“gerenuk”, "jodankee"” };

Undefined Behavior

e Example 1
o Webster’s dictionary
m one of most respected standards for American English
m about 470,000 entries, around 1000 are added each year

o according to the Webster’s standard “jodankee” . . .
m is not a valid word in the dictionary
m has no meaning and there is no correct pronunciation

o how accurate are these statements
m Feeding a jodankee too much chocolate is not harmful
m My jodankee connects over both USB 3 and WiFi

Undefined Behavior

e Building a definition for Undefined Behavior
o Webster’s dictionary : undefined
m not clearly or precisely shown, described, or limited

o Webster’s dictionary : behavior
m the way in which something functions or operates

o best practices
m when writing a story it is customary for the words to be real
m authors break this rule frequently
m readers can typically reason though the meaning
m A Wookie, a Klingon, and a Hobbit, walk into a bar . . .

Undefined Behavior

e Building a definition for Undefined Behavior
o our interpretation of the phrase “behavior which is undefined”
m something which does not function as described

o from this definition would you consider these undefined behavior
m can you play a guitar with missing strings
m Wwill a keyboard operate as a monitor

o how many non-words exist
m Wwith 26 letters in English there are a lot of combinations
m it would be impossible to list every word which is missing
from the Webster’s dictionary

10

Undefined Behavior

e Example 2
o what happens if you read past the end of an std::vector<T>
m read operation could return a perfectly valid T
m orit could return a value whichisnota T
m program may crash at runtime
m read could be optimized out by the compiler

11

Undefined Behavior

e Example 2
o what happens if you read past the end of an std::vector<T>
m read operation could return a perfectly valid T
m orit could return a value whichisnota T
m program may crash at runtime
m read could be optimized out by the compiler

o according to the C++ standard
m reading past the end of std::vector is undefined behavior

12

Undefined Behavior

e Definitions from the C++ Standard
o defined behavior
m code which has a clear or precise meaning

e int sum = 17 + 8;
o printf(“Welcome to CppCon 2021");
e auto [first, second] = getPair();

o implementation defined behavior
m code which can have multiple meanings
m compiler must consistently pick one and document the choice

e if (sizeof(int) < sizeof(long)) { 1}

13

Undefined Behavior

e Definitions from the C++ Standard
o unspecified behavior
m code which could have multiple meanings
m compiler is allowed to choose one at random

e comparing string literals
o lf (uabcn == uabcn) { }

o undefined behavior

m code which has no meaning

e invoking the destructor of an object twice
e doing a bit shift by a negative value
e converting a double to a float when the value is too large

14

Undefined Behavior

e Example 3

o does the following code compile

int * varA = nullptr;
*varA = 17;

int varB;
varA = &varB;

std: :cout << *varA;
std: :cout << varB;

//
//

//
//

//
//

line
line

line
line

line
line

—_—

W

92}

15

Undefined Behavior

e Example 3

o does the following code compile

m (line 2) dereferencing a null pointer is UB

int * varA = nullptr;
*varA = 17;

int varB;
varA = &varB;

std: :cout << *varA;
std: :cout << varB;

//
//

//
//

//
//

line
line

line
line

line
line

—_—

W

92}

16

Undefined Behavior

e Example 3

o does the following code compile
m (line 2) dereferencing a null pointer is UB
m (line 5) accessing an uninitialized variable is UB

int * varA = nullptr;
*varA = 17;

int varB;
varA = &varB;

std: :cout << *varA;
std: :cout << varB;

//
//

//
//

//
//

line
line

line
line

line
line

1
2

3
4, address of varB is valid

5, dereference is valid
6

17

Undefined Behavior

e Example 3

o does the following code compile
m (line 2) dereferencing a null pointer is UB
m (line 5) accessing an uninitialized variable is UB
m (line 6) accessing an uninitialized variable is UB

int * varA = nullptr;
*varA = 17;

int varB;
varA = &varB;

std: :cout << *varA;
std: :cout << varB;

//
//

//
//

//
//

line
line

line
line

line
line

1
2

3
4, address of varB is valid

5, dereference is valid
6

18

Undefined Behavior

e Awkward Syntax in C++
o does this function have undefined behavior

template <typename T1, typename T2>
volid doLessThanLessThan(T1 &x, T2 &y)
{

X<<y;

}

19

Undefined Behavior

e Awkward Syntax in C++

o does this function have undefined behavior

template <typename T1, typename T2>
volid doLessThanLessThan(T1 &x, T2 &y)

{

X << y;

}

doLessThanLessThan(250, 75);

doLessThanLessThan(std: :cout, "“cat”);

// bit shift, undefined behavior

// write to standard out

20

Undefined Behavior

e How is Undefined Behavior Defined in C++

o result of attempting to execute source code whose behavior
is not defined in the C++ standard

o responsibility of the programmer to write code which never
causes undefined behavior

o a correct program will operate as written
m only if the code is free of undefined behavior

o guarantees made by the C++ standard
m none, if you have any undefined behavior

21

Undefined Behavior

e Partial list of common C++ Undefined Behavior

O 0O o o oo o O o O o O

access to an element of an std::vector beyond the end
de-reference of a null pointer

use of an uninitialized variable

calling a pure virtual function from a constructor or destructor
use of an object after it has been destroyed (use after free)
casting a pointer to an incompatible type and then using the result
infinite loop without side effects

modifying a string literal or any other const object

failing to return a value from a value-returning function

any race condition

integer divide by zero

signed integer overflow

22

Undefined Behavior

e Example 4
o signed integer arithmetic
m if the result is beyond the range of representable values then
“signed integer overflow” occurs and is undefined behavior

o unsigned integer arithmetic
m according to the standard, this operation never overflows
and is defined behavior

int volume(int length)

{
return length * length * length;

}
23

Undefined Behavior

e Undefined Behavior is Not an Error

no overlap between undefined behavior and an error
something defined as an error, is not undefined behavior
undefined behavior is not something your code can test for

©)
©)
©)

code which produces an error at compile time

missing semicolon or unbalanced curly braces
method signature incompatible with the declaration
no matching candidate found for function call
adding the values of two pointers

code which results in a run time error

calling myString.erase(10) when the index is out of range
24

Undefined Behavior

e When is Undefined Behavior Acceptable

o ?

25

Undefined Behavior

e When is Undefined Behavior Acceptable
o in our opinion it is never acceptable

26

Undefined Behavior

e When is Undefined Behavior Acceptable
o 1in our opinion it is never acceptable

o signed integer overflow

m if you believe it is unlikely to happen with your expected
data set, do you still need to validate the input

27

Undefined Behavior

e When is Undefined Behavior Acceptable
o 1in our opinion it is never acceptable

o signed integer overflow
m if you believe it is unlikely to happen with your expected
data set, do you still need to validate the input

o adding extraneous mutexes or locks can prevent a race condition
m could introduce a deadlock, starvation, or a slow down

28

Undefined Behavior

e When is Undefined Behavior Acceptable
o 1in our opinion it is never acceptable

o signed integer overflow
m if you believe it is unlikely to happen with your expected
data set, do you still need to validate the input

o adding extraneous mutexes or locks can prevent a race condition
m could introduce a deadlock, starvation, or a slow down

o accessing an inactive member of a union
m reading an int after a float was saved, returns some raw data
m maybe the read of the int occurs before the write of the float

29

Undefined Behavior

e (Case Study
o description
m developer discovered undefined behavior in their code base
m however all units tests were passing

m they removed the undefined behavior from the application
m nhoticed some of the units tests now fail

30

Undefined Behavior

e (Case Study

o description

developer noticed undefined behavior in their code base
however all units tests were passing

they removed the undefined behavior from the application
noticed some of the units tests now fail

if your code base has undefined behavior, all of your unit
tests could be meaningless

31

Undefined Behavior

e (Case Study
o possible solutions
m put the undefined behavior back in the code base so all
the unit tests will pass
m mark the failing unit tests as “flaky”

try a different compiler or platform

test with a sanitizer

debug the unit tests until they pass

figure out if the unit tests were always incorrect

32

Undefined Behavior

e (Case Study
o reasoning
m unit tests were calling functionality in the application

m Wwith undefined behavior in the code base the unit tests
should be considered meaningless

m unit tests are part of the code base

m full debugging can not happen - until all undefined behavior
is removed from the application and unit tests

33

Undefined Behavior

e Software Design Philosophy

O

since the compiler can do anything, you may as well imagine
that it will do something bad

if your code works with all current compilers then whatever you
are doing is likely to become part of the standard

let people try it their way until the code crashes during a test

undefined behavior should exist only as an opt in feature, for
those who care about speed

eventually the committee will finish their job and get rid of UB

programmers should provide a justifiable argument to use
undefined behavior in their code base

34

Undefined Behavior

e Software Design Philosophy
o reading from a file or a stream
m did it open, is it empty, is the format correct

o multi threaded application
m what data should be atomic or guarded by a mutex

o class design
m Wwhich members should be marked const

o for all code you write
m does this code have any undefined behavior
m checking for undefined behavior is not an extra step

35

Undefined Behavior

e Compiler Options
o when optimization is turned off the compiler

does almost nothing special with your code

translates your code as near to literal as possible
undefined behavior may do what you expect so it appears
your code is working as intended

o normally optimization will be enabled

unreachable code can be removed

compilers are not required to diagnose undefined behavior
code can be “inlined” and then optimized

may produce unexpected results when a program has
undefined behavior

36

Undefined Behavior

e Example 5
o return statement missing from a “value returning function”
m undefined behavior
m some compilers provide a warning
m detected by some sanitizers at run time

o common outcome during program execution
m may result in a crash
m could return true every time
m might proceed to the “next function” in the executable

bool monthOfCppCon21() {
someData == “October”;

}
37

Undefined Behavior

e Example 6
o operator[] returns a reference to an element in the string
o this code has no test to verify index + 1 and index + 2 are in range
o what happens when the loop reaches the end of the string

// QString did not originally provide null termination

QString inputStr = “class std::vector<int>";
QString result;

for (int index = 0; index < inputStr.size(); ++index) {

if (inputStr[index+1] == ‘:’' && inputStr[index+2] == ':") {

index += 2;

result = inputStr.mid(index); // expected “vector<int>"
¥

}
38

Undefined Behavior

e Example 7
o some operations on a container invalidate iterators
o there is no general rule and you need to verify for every operation

o std::vector::insert() invalidates all iterators
m iterators in a range based for loop are hidden
m what does the current iterator point to after line A

std::vector<int> myContainer = { 42, 14, 5, 31, 9 };

for (auto &item : myContainer) {
if (item == 5) {
myContainer.insert(myContainer.begin(), -5); // line A
¥
}

39

Undefined Behavior

e Example 8
o keyword const_cast removes the “constness” of an object
o modifying input is undefined behavior if the passed argument

was originally declared as const

const std::string value = “tiger”; // line A
doThing8(value);

void doThing8(const std::string & input) {
std::string &tmp = const_cast<std::string &>(input); // line B
tmp = “bear”; // line C

}

40

Undefined Behavior

e Example 9
o specializing a type trait which exists in the std namespace is UB
o Wwriting your own type traits is perfectly acceptable and they can
be in any namespace other than std::

namespace std {

template<>

struct is_pointer<int>
: public std::true_type // defines a type trait as true
{}

}

bool var2 = std::is_pointer<int>::value;

41

Undefined Behavior

e Example 10
o are either of the following expressions undefined behavior

int varA = 5;
varA = ++varA + 2; // pre 1increment

int varB = 3;
varB = varB++ + 2; // post increment

42

Undefined Behavior

e Example 10
o pre increment and assighment to the same variable is
undefined behavior in some versions of the standard

int varA = 5;
varA = ++varA + 2; // C++03, undefined behavior
varA == 8; // C++11 and newer, defined

int varB = 3;
varB = varB++ + 2; // post increment

43

Undefined Behavior

e Example 10
o pre/post increment and assignment to the same variable is
undefined behavior in some versions of the standard

int varA = 5;
varA = ++varA + 2; // C++03, undefined behavior
varA == 8; // C++11 and newer, defined

int varB = 3;
varB = varB++ + 2; // C++03 and C++11, undefined behavior
varB == 5; // C++17 and newer, defined

44

Undefined Behavior

e Resolving Undefined Behavior
o tools to help locate UB in your code base
m Address Sanitizer
m Memory Sanitizer
m Undefined Behavior Sanitizer
m Thread Sanitizer

o code reviews
m institute a policy which exclusively checks for UB

pay attention to compiler warnings

build your code with multiple compilers
test crazy corner cases

treat undefined behavior as a critical bug

O O O O

45

Undefined Behavior

e Back to the Basics . . .
o undefined behavior can not be treated like an error
o dealing with undefined behavior is not a sometimes thing
o this is not a simple topic

o projects can opt out of C++ features like exceptions, but you can
not ignore undefined behavior

o undefined behavior is the responsibility of every developer and
you accepted it when choosing C++

46

Presentations - www.youtube.com/copperspice

Things every C++ programmer should know . . .

H

3
3
3

L OO

Modern C++ Data Types (data types, references)
Modern C++ Data Types (value categories)
Modern C++ Data Types (move semantics, perfect forwarding)

Learn Programming, then Learn How to Be a Programmer (CppOnSea Keynote)
https://www.youtube.com/watch?v=jla17JCaNvo

What is the C++ Standard Library [Multithreading in C++
CsString library - Intro to Unicode A Modern C++ Threads
char8_t 4 C++ Memory Model

47

Iy By Ay Iy Ny Wy Iy Ny Wy Wy W]y W]y W W

Presentations - www.youtube.com/copperspice

Why CopperSpice, Why DoxyPress

Compile Time Counter

Multithreading using CsLibGuarded

Signals and Slots

Templates in the Real World

Copyright Copyleft

What’s in a Container

C++ Undefined Behavior

Regular Expressions

Type Traits

C++ Tapas (typedef, forward declarations)
C++ Tapas (typename, virtual, pure virtual)
Lambdas in C++

Overload Resolution

Futures & Promises

Thread Safety

Constexpr Static Const

When Your Codebase is Old Enough to Vote
Sequencing

Linkage

I By Iy Ny iy Iy Iy Iy Iy Wy W)y Wy W

Inheritance

Evolution of Graphics Technology
GPU, Pipeline, and the Vector Graphics API
Declarations and Type Conversions
Lambdas in Action

Any Optional

Variant

std::visit

CsPaint Library

Moving to C++17

Attributes

Copy Elision

Time Complexity

Qualifiers

Concepts in C++20

Atomics

Memory Model to Mutexes
Mutexes + Lock = CsLibGuarded
Variable Templates

Paradigms and Polymorphism 4

e CopperSpice

o libraries for developing GUI applications

e (sSignal Library

o standalone thread aware signal/slot library

e (sString Library

o standalone unicode aware string library

e (CsLibGuarded

o standalone multithreading library for shared data

49

e (CsCrypto

o C++ interface to the Botan and OpenSSL libraries

e (CsPaint Library
o standalone C++ library for rendering graphics on the GPU

50

Applications

e KitchenSink
o contains over 30 demos, uses almost every CopperSpice library

e Diamond
o programmers editor which uses the CopperSpice libraries

e DoxyPress & DoxyPressApp

o application for generating source code and APl documentation

51

Where to find CopperSpice

® WwWw.copperspice.com
e twitter: @copperspice_cpp

e ansel@copperspice.com
e barbara@copperspice.com

e source, binaries, documentation files
o download.copperspice.com

e source code repository
o github.com/copperspice

e discussion
o forum.copperspice.com

52

