
Undefined Behavior
Back To Basics

Barbara Geller & Ansel Sermersheim
CppCon - October 2021

Introduction

● Prologue
● Overview
● Building a definition for Undefined Behavior
● Definitions from the C++ Standard
● Partial List of Common C++ Undefined Behavior
● Undefined Behavior is Not an Error
● When is Undefined Behavior Acceptable
● Compiler Options
● Resolving Undefined Behavior
● Examples

2

Prologue

3

● Co-Founders of the following projects
○ CopperSpice

■ cross platform C++ GUI libraries

○ DoxyPress
■ documentation generator for C++ and other languages

○ CsString
■ support for UTF-8 and UTF-16, extensible to other encodings

○ CsSignal
■ thread aware signal / slot library

○ CsLibGuarded
■ library for managing access to data shared between threads

Prologue

● Credentials
○ every library and application is open source
○ projects are developed using cutting edge C++ technology
○ all source code hosted on github
○ prebuilt binaries available on our download site
○ documentation is generated by DoxyPress

○ youtube channel with videos focused mostly on C++
○ speakers at multiple conferences

■ CppCon, CppNow, emBO++, MeetingC++, code::dive
○ numerous presentations for C++ user groups

■ United States, Germany, Netherlands, England

4

Undefined Behavior

● Overview
○ misconceptions about undefined behavior

■ undefined behavior will be found in a code review
■ debugging undefined behavior just takes a bit of practice
■ good testing will catch undefined behavior

■ they are working on get rid of undefined behavior in C++
■ better compilers will report undefined behavior as an error
■ experienced developers never have the bad undefined behavior

○ what the standard says about undefined behavior
■ if your program has undefined behavior, it is not correct

5

Undefined Behavior

● Overview
○ compiler developer

■ objective is to leverage every opportunity to optimize
■ undefined behavior is a fun theoretical discussion
■ understanding every aspect of undefined behavior is essential
■ overlooking undefined behavior can impact performance

○ application developer
■ objective is to write code which has zero undefined behavior
■ undefined behavior can be a daunting, intimidating discussion
■ understanding how to avoid undefined behavior is mandatory
■ ignoring undefined behavior is dangerous

6

Undefined Behavior

● Example 1
○ detailed description

■ declares a vector of strings
■ assigns values using an initializer list
■ names.size() will return 5

○ is there any undefined behavior?

std::vector<std::string> names;
names = { “tiger”, “horse”, “ostrich”, “gerenuk”, “jodankee” };

7

Undefined Behavior

● Example 1
○ Webster’s dictionary

■ one of most respected standards for American English
■ about 470,000 entries, around 1000 are added each year

○ according to the Webster’s standard “jodankee” . . .

■ is not a valid word in the dictionary
■ has no meaning and there is no correct pronunciation

○ how accurate are these statements
■ Feeding a jodankee too much chocolate is not harmful
■ My jodankee connects over both USB 3 and WiFi

8

Undefined Behavior

● Building a definition for Undefined Behavior
○ Webster’s dictionary : undefined

■ not clearly or precisely shown, described, or limited

○ Webster’s dictionary : behavior
■ the way in which something functions or operates

○ best practices
■ when writing a story it is customary for the words to be real
■ authors break this rule frequently
■ readers can typically reason though the meaning
■ A Wookie, a Klingon, and a Hobbit, walk into a bar . . .

9

Undefined Behavior

● Building a definition for Undefined Behavior
○ our interpretation of the phrase “behavior which is undefined”

■ something which does not function as described

○ from this definition would you consider these undefined behavior
■ can you play a guitar with missing strings
■ will a keyboard operate as a monitor

○ how many non-words exist
■ with 26 letters in English there are a lot of combinations
■ it would be impossible to list every word which is missing

from the Webster’s dictionary

10

Undefined Behavior

● Example 2
○ what happens if you read past the end of an std::vector<T>

■ read operation could return a perfectly valid T
■ or it could return a value which is not a T
■ program may crash at runtime
■ read could be optimized out by the compiler

11

Undefined Behavior

● Example 2
○ what happens if you read past the end of an std::vector<T>

■ read operation could return a perfectly valid T
■ or it could return a value which is not a T
■ program may crash at runtime
■ read could be optimized out by the compiler

○ according to the C++ standard
■ reading past the end of std::vector is undefined behavior

12

Undefined Behavior

● Definitions from the C++ Standard
○ defined behavior

■ code which has a clear or precise meaning

● int sum = 17 + 8;
● printf(“Welcome to CppCon 2021”);
● auto [first, second] = getPair();

○ implementation defined behavior
■ code which can have multiple meanings
■ compiler must consistently pick one and document the choice

● if (sizeof(int) < sizeof(long)) { }

13

Undefined Behavior

● Definitions from the C++ Standard
○ unspecified behavior

■ code which could have multiple meanings
■ compiler is allowed to choose one at random

● comparing string literals
○ if (“abc” == “abc”) { }

○ undefined behavior
■ code which has no meaning

● invoking the destructor of an object twice
● doing a bit shift by a negative value
● converting a double to a float when the value is too large

14

Undefined Behavior

● Example 3
○ does the following code compile

int * varA = nullptr; // line 1
*varA = 17; // line 2

int varB; // line 3
varA = &varB; // line 4

std::cout << *varA; // line 5
std::cout << varB; // line 6

15

Undefined Behavior

● Example 3
○ does the following code compile

■ (line 2) dereferencing a null pointer is UB

int * varA = nullptr; // line 1
*varA = 17; // line 2

int varB; // line 3
varA = &varB; // line 4

std::cout << *varA; // line 5
std::cout << varB; // line 6

16

Undefined Behavior

● Example 3
○ does the following code compile

■ (line 2) dereferencing a null pointer is UB
■ (line 5) accessing an uninitialized variable is UB

int * varA = nullptr; // line 1
*varA = 17; // line 2

int varB; // line 3
varA = &varB; // line 4, address of varB is valid

std::cout << *varA; // line 5, dereference is valid
std::cout << varB; // line 6

17

Undefined Behavior

● Example 3
○ does the following code compile

■ (line 2) dereferencing a null pointer is UB
■ (line 5) accessing an uninitialized variable is UB
■ (line 6) accessing an uninitialized variable is UB

int * varA = nullptr; // line 1
*varA = 17; // line 2

int varB; // line 3
varA = &varB; // line 4, address of varB is valid

std::cout << *varA; // line 5, dereference is valid
std::cout << varB; // line 6

18

Undefined Behavior

● Awkward Syntax in C++
○ does this function have undefined behavior

template <typename T1, typename T2>
void doLessThanLessThan(T1 &x, T2 &y)
{
 x << y;
}

19

Undefined Behavior

● Awkward Syntax in C++
○ does this function have undefined behavior

template <typename T1, typename T2>
void doLessThanLessThan(T1 &x, T2 &y)
{
 x << y;
}

doLessThanLessThan(250, 75); // bit shift, undefined behavior

doLessThanLessThan(std::cout, “cat”); // write to standard out

20

Undefined Behavior

● How is Undefined Behavior Defined in C++

○ result of attempting to execute source code whose behavior
is not defined in the C++ standard

○ responsibility of the programmer to write code which never
causes undefined behavior

○ a correct program will operate as written
■ only if the code is free of undefined behavior

○ guarantees made by the C++ standard
■ none, if you have any undefined behavior

21

Undefined Behavior

● Partial list of common C++ Undefined Behavior
○ access to an element of an std::vector beyond the end
○ de-reference of a null pointer
○ use of an uninitialized variable
○ calling a pure virtual function from a constructor or destructor
○ use of an object after it has been destroyed (use after free)
○ casting a pointer to an incompatible type and then using the result
○ infinite loop without side effects
○ modifying a string literal or any other const object
○ failing to return a value from a value-returning function
○ any race condition
○ integer divide by zero
○ signed integer overflow

22

Undefined Behavior

● Example 4
○ signed integer arithmetic

■ if the result is beyond the range of representable values then
“signed integer overflow” occurs and is undefined behavior

○ unsigned integer arithmetic
■ according to the standard, this operation never overflows

and is defined behavior

int volume(int length)
{
 return length * length * length;
}

23

Undefined Behavior

● Undefined Behavior is Not an Error
○ no overlap between undefined behavior and an error
○ something defined as an error, is not undefined behavior
○ undefined behavior is not something your code can test for

○ code which produces an error at compile time
■ missing semicolon or unbalanced curly braces
■ method signature incompatible with the declaration
■ no matching candidate found for function call
■ adding the values of two pointers

○ code which results in a run time error
■ calling myString.erase(10) when the index is out of range

24

Undefined Behavior

● When is Undefined Behavior Acceptable
○ ?

25

Undefined Behavior

● When is Undefined Behavior Acceptable
○ in our opinion it is never acceptable

26

Undefined Behavior

● When is Undefined Behavior Acceptable
○ in our opinion it is never acceptable

○ signed integer overflow
■ if you believe it is unlikely to happen with your expected

data set, do you still need to validate the input

27

Undefined Behavior

● When is Undefined Behavior Acceptable
○ in our opinion it is never acceptable

○ signed integer overflow
■ if you believe it is unlikely to happen with your expected

data set, do you still need to validate the input

○ adding extraneous mutexes or locks can prevent a race condition
■ could introduce a deadlock, starvation, or a slow down

28

Undefined Behavior

● When is Undefined Behavior Acceptable
○ in our opinion it is never acceptable

○ signed integer overflow
■ if you believe it is unlikely to happen with your expected

data set, do you still need to validate the input

○ adding extraneous mutexes or locks can prevent a race condition
■ could introduce a deadlock, starvation, or a slow down

○ accessing an inactive member of a union
■ reading an int after a float was saved, returns some raw data
■ maybe the read of the int occurs before the write of the float

29

Undefined Behavior

● Case Study
○ description

■ developer discovered undefined behavior in their code base
■ however all units tests were passing

■ they removed the undefined behavior from the application
■ noticed some of the units tests now fail

30

Undefined Behavior

● Case Study
○ description

■ developer noticed undefined behavior in their code base
■ however all units tests were passing

■ they removed the undefined behavior from the application
■ noticed some of the units tests now fail

■ if your code base has undefined behavior, all of your unit
tests could be meaningless

31

Undefined Behavior

● Case Study
○ possible solutions

■ put the undefined behavior back in the code base so all
the unit tests will pass

■ mark the failing unit tests as “flaky”

■ try a different compiler or platform
■ test with a sanitizer
■ debug the unit tests until they pass
■ figure out if the unit tests were always incorrect

32

Undefined Behavior

● Case Study
○ reasoning

■ unit tests were calling functionality in the application

■ with undefined behavior in the code base the unit tests
should be considered meaningless

■ unit tests are part of the code base

■ full debugging can not happen - until all undefined behavior
is removed from the application and unit tests

33

Undefined Behavior

● Software Design Philosophy
○ since the compiler can do anything, you may as well imagine

that it will do something bad

○ if your code works with all current compilers then whatever you
are doing is likely to become part of the standard

○ let people try it their way until the code crashes during a test

○ undefined behavior should exist only as an opt in feature, for
those who care about speed

○ eventually the committee will finish their job and get rid of UB

○ programmers should provide a justifiable argument to use
undefined behavior in their code base

34

Undefined Behavior

● Software Design Philosophy
○ reading from a file or a stream

■ did it open, is it empty, is the format correct

○ multi threaded application
■ what data should be atomic or guarded by a mutex

○ class design
■ which members should be marked const

○ for all code you write
■ does this code have any undefined behavior
■ checking for undefined behavior is not an extra step

35

Undefined Behavior

● Compiler Options
○ when optimization is turned off the compiler

■ does almost nothing special with your code
■ translates your code as near to literal as possible
■ undefined behavior may do what you expect so it appears

your code is working as intended

○ normally optimization will be enabled
■ unreachable code can be removed
■ compilers are not required to diagnose undefined behavior
■ code can be “inlined” and then optimized
■ may produce unexpected results when a program has

undefined behavior
36

Undefined Behavior

● Example 5
○ return statement missing from a “value returning function”

■ undefined behavior
■ some compilers provide a warning
■ detected by some sanitizers at run time

○ common outcome during program execution
■ may result in a crash
■ could return true every time
■ might proceed to the “next function” in the executable

bool monthOfCppCon21() {
 someData == “October”;
}

37

Undefined Behavior

● Example 6
○ operator[] returns a reference to an element in the string
○ this code has no test to verify index + 1 and index + 2 are in range
○ what happens when the loop reaches the end of the string

// QString did not originally provide null termination

QString inputStr = “class std::vector<int>“;
QString result;

for (int index = 0; index < inputStr.size(); ++index) {
 if (inputStr[index+1] == ‘:’ && inputStr[index+2] == ‘:’) {
 index += 2;
 result = inputStr.mid(index); // expected “vector<int>”
 }
}

38

Undefined Behavior

● Example 7
○ some operations on a container invalidate iterators
○ there is no general rule and you need to verify for every operation

○ std::vector::insert() invalidates all iterators
■ iterators in a range based for loop are hidden
■ what does the current iterator point to after line A

std::vector<int> myContainer = { 42, 14, 5, 31, 9 };

for (auto &item : myContainer) {
 if (item == 5) {
 myContainer.insert(myContainer.begin(), -5); // line A
 }
}

39

Undefined Behavior

● Example 8
○ keyword const_cast removes the “constness” of an object
○ modifying input is undefined behavior if the passed argument

was originally declared as const

const std::string value = “tiger”; // line A
doThing8(value);

void doThing8(const std::string & input) {
 std::string &tmp = const_cast<std::string &>(input); // line B
 tmp = “bear”; // line C
}

40

Undefined Behavior

● Example 9
○ specializing a type trait which exists in the std namespace is UB
○ writing your own type traits is perfectly acceptable and they can

be in any namespace other than std::

namespace std {

 template<>
 struct is_pointer<int>
 : public std::true_type // defines a type trait as true
 { };

}

bool var2 = std::is_pointer<int>::value;

41

Undefined Behavior

● Example 10
○ are either of the following expressions undefined behavior

int varA = 5;
varA = ++varA + 2; // pre increment

int varB = 3;
varB = varB++ + 2; // post increment

42

Undefined Behavior

● Example 10
○ pre increment and assignment to the same variable is

undefined behavior in some versions of the standard

int varA = 5;
varA = ++varA + 2; // C++03, undefined behavior
varA == 8; // C++11 and newer, defined

int varB = 3;
varB = varB++ + 2; // post increment

43

Undefined Behavior

● Example 10
○ pre/post increment and assignment to the same variable is

undefined behavior in some versions of the standard

int varA = 5;
varA = ++varA + 2; // C++03, undefined behavior
varA == 8; // C++11 and newer, defined

int varB = 3;
varB = varB++ + 2; // C++03 and C++11, undefined behavior
varB == 5; // C++17 and newer, defined

44

Undefined Behavior

● Resolving Undefined Behavior
○ tools to help locate UB in your code base

■ Address Sanitizer
■ Memory Sanitizer
■ Undefined Behavior Sanitizer
■ Thread Sanitizer

○ code reviews
■ institute a policy which exclusively checks for UB

○ pay attention to compiler warnings
○ build your code with multiple compilers
○ test crazy corner cases
○ treat undefined behavior as a critical bug

45

Undefined Behavior

● Back to the Basics . . .

○ undefined behavior can not be treated like an error

○ dealing with undefined behavior is not a sometimes thing

○ this is not a simple topic

○ projects can opt out of C++ features like exceptions, but you can
not ignore undefined behavior

○ undefined behavior is the responsibility of every developer and
you accepted it when choosing C++

46

Presentations - www.youtube.com/copperspice

Things every C++ programmer should know . . .

❏ Modern C++ Data Types (data types, references)
❏ Modern C++ Data Types (value categories)
❏ Modern C++ Data Types (move semantics, perfect forwarding)

❏ Learn Programming, then Learn How to Be a Programmer (CppOnSea Keynote)
https://www.youtube.com/watch?v=jIa17JCaNvo

47

❏ What is the C++ Standard Library
❏ CsString library - Intro to Unicode
❏ char8_t

❏ Multithreading in C++
❏ Modern C++ Threads
❏ C++ Memory Model

Presentations - www.youtube.com/copperspice

❏ Why CopperSpice, Why DoxyPress
❏ Compile Time Counter
❏ Multithreading using CsLibGuarded
❏ Signals and Slots
❏ Templates in the Real World
❏ Copyright Copyleft
❏ What’s in a Container
❏ C++ Undefined Behavior
❏ Regular Expressions
❏ Type Traits
❏ C++ Tapas (typedef, forward declarations)
❏ C++ Tapas (typename, virtual, pure virtual)
❏ Lambdas in C++
❏ Overload Resolution
❏ Futures & Promises
❏ Thread Safety
❏ Constexpr Static Const
❏ When Your Codebase is Old Enough to Vote
❏ Sequencing
❏ Linkage

48

❏ Inheritance
❏ Evolution of Graphics Technology
❏ GPU, Pipeline, and the Vector Graphics API
❏ Declarations and Type Conversions
❏ Lambdas in Action
❏ Any Optional
❏ Variant
❏ std::visit
❏ CsPaint Library
❏ Moving to C++17
❏ Attributes
❏ Copy Elision
❏ Time Complexity
❏ Qualifiers
❏ Concepts in C++20
❏ Atomics
❏ Memory Model to Mutexes
❏ Mutexes + Lock = CsLibGuarded
❏ Variable Templates
❏ Paradigms and Polymorphism

Libraries

● CopperSpice
○ libraries for developing GUI applications

● CsSignal Library
○ standalone thread aware signal/slot library

● CsString Library
○ standalone unicode aware string library

● CsLibGuarded
○ standalone multithreading library for shared data

49

Libraries

● CsCrypto
○ C++ interface to the Botan and OpenSSL libraries

● CsPaint Library
○ standalone C++ library for rendering graphics on the GPU

50

Applications

● KitchenSink
○ contains over 30 demos, uses almost every CopperSpice library

● Diamond
○ programmers editor which uses the CopperSpice libraries

● DoxyPress & DoxyPressApp
○ application for generating source code and API documentation

51

Where to find CopperSpice

● www.copperspice.com
● twitter: @copperspice_cpp

● ansel@copperspice.com
● barbara@copperspice.com

● source, binaries, documentation files
○ download.copperspice.com

● source code repository
○ github.com/copperspice

● discussion
○ forum.copperspice.com

52

