Modern C++, From the
Beginning to the Middle

Ansel Sermersheim & Barbara Geller
emBO++

March 2021

Introduction

Prologue

Where is the Beginning
Data Types

Pointers / References
Value Categories
Expressions

Parameter Passing
Examples

e C(Credentials

O O O O O

o O

every library and application is open source

our development uses cutting edge C++ technology
all source code hosted on github

prebuilt binaries are available on our download site
documentation is generated by DoxyPress

youtube channel with videos focused mostly on C++
frequent speakers at multiple conferences

m CppCon, CppNow, emBO++, MeetingC++, code::dive
numerous presentations for C++ user groups

m United States, Germany, Netherlands, England

e Maintainers and Co-Founders

O

CopperSpice
m cross platform C++ libraries

DoxyPress
m documentation generator for C++ and other languages

CsString
m support for UTF-8 and UTF-16, extensible to other encodings

CsSignal
m thread aware signal / slot library

CsLibGuarded
m library for managing access to data shared between threads

Where is the Beginning

e What can you Define?
what makes something a data type

©)
©)

O O O O

how does an expression relate to a data type

is a reference an object that refers to a pointer

can you pass a pointer by reference
are pointers of value
do we really need references

are these just different words for the same thing

reference, lvalue, lvalue reference

Where is the Beginning

e (C++11 was a New Beginning

O O O O O

defined new data types

new value categories

defined semantics

constexpr, lambda expressions, smart pointers
memory model, atomics, mutexes, threading library

e (C++ standard

O O O O O

C++98 standard is 832 pages (page size: letter, font 10 pt)
C++11 standard is 1222 pages

C++14 standard is 1261 pages

C++17 standard is 1485 pages

C++20 standard is 1683 pages (page size: A4, font 8 pt)

Data Types

e Definition of a data type
o data types are defined by two characteristics

m set of possible values
m operations which can be done on or with the values

Data Types

e Primitive or Simple Data Types
o basic low level types which must be provided by the language
o only one value is associated with a given variable

o examples in C++
m char, int, bool, double, float

Data Types

e Built In Data Types
o types which are provided by the language as a convenience
o exact types will vary depending on the programming language

o examples in C++
m std::array, std::complex, std::list, std::vector

Data Types

e Composite or Compound Data Types
o derived from more than one primitive and/or built in type
o creating a composite type produces a new data type

o examples in C++
m class, structure

10

Data Types

e User Defined Data Types
o declared by the developer in their source code -OR-
o user types created in a third party library

o examples in C++
m enum class Spices { mint, basil, salt, pepper };
m class QString;
m class Employee;

11

Data Types

e Abstract Data Type
o any type which does not specify an implementation

o definition of a Stack includes the push() and pop() functions
m well defined in computer science
m implementation depends on the storage container

o an abstract class does not implement all methods it declares

o Yyou do not directly instantiate an abstract class
o users should create a subclass and then instantiate the child class

12

e Pointer Data Type
o values
m nullptr or an address where some data is located

o operations
m assignment
dereference
comparison
subtraction of two pointer values

H
H
H
m addition or subtraction with an integer value

13

e Pointer Data Type
o declaring a pointer must include the type of what is being stored

o size of the pointer type is based on the platform

o required allocation for the data is determined by the type used
in the pointer declaration

int * vari; // var1 declares a ptr to a value of type int

Widget * var2; // var2 declares a ptr to a value of type Widget

14

References

e Reference Data Type
o values
m determined by the values of the type being referenced

o operations
m determined by the operations of the type which is referenced
m might be limited to a subset of the operations if there are
qualifiers such as const

15

References

e Reference Data Type
o lvalue reference
m declared object can be modified by the called function and
then observed by the original caller

o const reference
m called function can not modify the passed object

o rvalue reference

m declared object can be modified by the called function
however the original caller should never observe the changes

16

References

e Reference Data Type
o declaring an lvalue reference involves specifying the type and a
single & before the variable

o countB is a variable which is bound to countA
o modifying the value of countB will change the value of countA

int countA

= 12;
int & countB =

countA;

17

References

e Reference Data Type
o declaring a const reference involves specifying the type and a single
& before the variable

o countB is a variable which is bound to countA

o modifying the value of countB is not permitted
o changing countA is allowed and will be visible by countB

int countA = 17;
const i1nt & countB = countA;

18

References

e Reference Data Type
o declaring an rvalue reference involves specifying the type and a
double && before the variable

o countB is a variable which is bound to countA

o modifying the value of countB will change the value of countA
o after the std::move() countA should never be observed

int countA = 8;
int && countB = std::move(countA);

19

Value Categories

e Value Categories
o five main groups
m glvalue, prvalue, xvalue, lvalue, rvalue

o every object, variable, or expression is either . . .
m an lvalue or an rvalue

o if any of these are true it is an lvalue
m has an identity
m has a name
m resides at a memory location

20

Value Categories

e lvalue
o button is an lvalue and its data type is pointer to Widget
o *button is an lvalue and its data type is Widget

Widget * button = new Widget;

e rvalue
o passed value is an rvalue and its data type is std::string
o result is an lvalue and its data type is int

int result = someFunction(std::string(“emB0”));

21

Expressions

e Definition of an Expression
o every expression has two attributes
m data type
m Vvalue category

o evaluation of an expression always generates a result

int sum; // line 1
sum = 10 + 20; // line 2
auto index = getIndex(); // line 3

++1index; // line 4

22

Expressions

e Definition of an Expression
o getlndex() is a function call expression
o value category depends on the return type
m returns by value then it is an rvalue (prvalue)
m returns an lvalue reference then it is an lvalue
m returns an rvalue reference then it is rvalue (xvalue)

auto index = getIndex(); // line 3
++1index; // line 4

23

Parameter Passing

e Passing Arguments
o functions in C always receive parameters by value
m programmers call this “pass by value”

o functions in C++ can receive parameters by value or by reference
m programmers call this “pass by value”
m programmers call this “pass by reference”

o “pass by X” is misleading . . .

24

Parameter Passing

e Example 1
o int data type, value is 27

int dayA = 27,

Variable Memory Address | Value

dayA 1000 27

25

Parameter Passing

e Example 1.1

int dayA = 27;
myFunc(dayA);

void myFunc(X dayB);

Options for X

const int dayB

int dayB

const int & dayB

int & dayB

26

Parameter Passing

e Example 1.2

int dayA = 27;
myFunc(&dayA);

void myFunc(X dayB);

Options for X
const int * dayB
int * dayB
const int * const & dayB

int

const & dayB

const int

&& dayB

int

&& dayB

27

Parameter Passing

e Example 1.3

int dayA = 27; Options for X

myFunc(*dayA); dereference of an int
data type is not valid

void myFunc(X dayB);

28

Parameter Passing

e Example 2
o pointer data type, int value is 3

int *monthA = new int(3);

Variable Memory Address | Value

monthA 1000 5000

5000 3

29

Parameter Passing

e Example 2.1

int * monthA = new 1int(3); PSS

myFunc(monthA); const int * monthB

int * monthB

oid myFunc(X monthB); :
void myFunc() const int * const & monthB

int * & monthB

int * const & monthB

30

Parameter Passing

e Example 2.2

int * monthA = new 1int(3); QIR har X

myFunc(&monthA); const int * const * monthB

int * const * monthB

void myFunc(X monthB); int ** monthB

const int * const * const & monthB

int * const * const & monthB

int ** const & monthB

int ** && monthB

int * const * & & monthB

31

Parameter Passing

e Example 2.3

int * monthA = new 1int(3); PSS
myFunc(*monthA); const int monthB
int monthB

void myFunc(X monthB); .
IFIIEL) const int & monthB

int & monthB

32

Parameter Passing

e Example 3
o reference data type, int value is 2021

int yearA = 2021;

int & yearB = yearA;
Variable Memory Address | Value
yearA 1000 2021

yearB 1000 2021

33

Parameter Passing

e Example 3.1
int yearA = 2021;

int & yearB = yearA;
myFunc(yearB);

void myFunc(X yearC);

Options for X

const int yearC

int yearcC

const int & yearC

int & yearC

34

Parameter Passing

e Example 3.2

int yearA = 2021;
int & yearB = yearA;
myFunc(&yearB);

void myFunc(X yearC);

Options for X

const

int

*

yearC

int

*

yearC

const

int

*

const & yearC

int

*

const & yearC

const

int

&& yearC

int

&& yearC

35

Parameter Passing

e Example 3.3
int yearA = 2021;

int & yearB = yearA;
myFunc(*yearB);

void myFunc(X yearC);

Options for X

dereference of an int
data type is not valid

36

Parameter Passing

e Reference to a Pointer
o button name might be “Email”, “Print”, “Cancel”

Widget * button = nullptr;
if (showDialog(button)) {

printf(“Button Clicked = %s”, button->name());
¥

bool showDialog(Widget *& pushButton) {
if (! runDialog()) {
return false;

}

// received by reference

pushButton = getSelectedButton();
return true;

}

37

Parameter Passing

e Pointer to a Pointer
o button name might be “Email”, “Print”, “Cancel”

Widget * button = nullptr;
if (showDialog(& button)) {

printf(“Button Clicked = %s”, button->name());
¥

bool showDialog(Widget ** pushButton) {
if (! runDialog()) {
return false;

}

// received by value

*pushButton = getSelectedButton();
return true;

}
38

Parameter Passing

e Summary
o pass by value should be thought of as receive by value
m Vvalue category for the argument which is being passed

can be an lvalue or an rvalue
e [values will be copied
e rvalues will be moved

o pass by reference should be thought of as receive by reference
m value category for the argument which is being passed

depends on which type of reference is received
e only an lvalue can be passed to an lvalue reference
e any value category can be passed to a const reference
e only an rvalue can be passed to an rvalue reference

39

Presentations

Iy By Ay Iy Ny Wy Iy Ny Wy Wy W]y W]y W W

Why CopperSpice, Why DoxyPress

Compile Time Counter

Modern C++ Data Types

CsString library (unicode)

Multithreading in C++

Multithreading using libGuarded

Signals and Slots

Templates in the Real World

What’s in a Container

Modern C++ Threads

C++ Undefined Behavior

Regular Expressions

Type Traits

C++ Tapas (typedef, forward declarations)
C++ Tapas (typename, virtual, pure virtual)
Overload Resolution

Futures & Promises

Thread Safety

Constexpr Static Const

When Your Codebase is Old Enough to Vote

Lol oooooodoo

Sequencing, Linkage, Inheritance
Evolution of Graphics Technology

GPU, Pipeline, and the Vector Graphics API
Declarations and Type Conversions

C++ ISO Standard

Inline Namespaces

Lambdas in Action

Any Optional, Variant

CsPaint Library

Moving to C++17

What is the C++ Standard Library
Attributes, Copy Elision, Time Complexity
Qualifiers

C++ Memory Model

Atomics, Mutexes

Mutexes to CsLibGuarded

Please subscribe to our YouTube Channel
https://www.youtube.com/copperspice

40

Applications

e KitchenSink
o contains 30 demos and links with almost every CopperSpice library

e Diamond
o programmers editor which uses the CopperSpice libraries

e DoxyPress & DoxyPressApp

o application for generating source code and APl documentation

41

Where to find CopperSpice

® WwWw.copperspice.com
e twitter: @copperspice_cpp

e ansel@copperspice.com
e barbara@copperspice.com

e source, binaries, documentation files
o download.copperspice.com

e source code repository
o github.com/copperspice

e discussion
o forum.copperspice.com

42

