
Modern C++, From the
Beginning to the Middle

Ansel Sermersheim & Barbara Geller
emBO++

March 2021
1

Introduction

● Prologue
● Where is the Beginning
● Data Types
● Pointers / References
● Value Categories
● Expressions
● Parameter Passing
● Examples

2

Prologue

3

● Credentials
○ every library and application is open source
○ our development uses cutting edge C++ technology
○ all source code hosted on github
○ prebuilt binaries are available on our download site
○ documentation is generated by DoxyPress

○ youtube channel with videos focused mostly on C++
○ frequent speakers at multiple conferences

■ CppCon, CppNow, emBO++, MeetingC++, code::dive
○ numerous presentations for C++ user groups

■ United States, Germany, Netherlands, England

Prologue

4

● Maintainers and Co-Founders
○ CopperSpice

■ cross platform C++ libraries

○ DoxyPress
■ documentation generator for C++ and other languages

○ CsString
■ support for UTF-8 and UTF-16, extensible to other encodings

○ CsSignal
■ thread aware signal / slot library

○ CsLibGuarded
■ library for managing access to data shared between threads

Where is the Beginning

● What can you Define?
○ what makes something a data type
○ how does an expression relate to a data type

○ is a reference an object that refers to a pointer
○ can you pass a pointer by reference
○ are pointers of value
○ do we really need references

○ are these just different words for the same thing
■ reference, lvalue, lvalue reference

5

Where is the Beginning

● C++11 was a New Beginning
○ defined new data types
○ new value categories
○ defined semantics
○ constexpr, lambda expressions, smart pointers
○ memory model, atomics, mutexes, threading library

● C++ standard
○ C++98 standard is 832 pages (page size: letter, font 10 pt)
○ C++11 standard is 1222 pages
○ C++14 standard is 1261 pages
○ C++17 standard is 1485 pages
○ C++20 standard is 1683 pages (page size: A4, font 8 pt)

6

Data Types

● Definition of a data type
○ data types are defined by two characteristics

■ set of possible values
■ operations which can be done on or with the values

7

Data Types

● Primitive or Simple Data Types
○ basic low level types which must be provided by the language
○ only one value is associated with a given variable

○ examples in C++
■ char, int, bool, double, float

8

Data Types

● Built In Data Types
○ types which are provided by the language as a convenience
○ exact types will vary depending on the programming language

○ examples in C++
■ std::array, std::complex, std::list, std::vector

9

Data Types

● Composite or Compound Data Types
○ derived from more than one primitive and/or built in type
○ creating a composite type produces a new data type

○ examples in C++
■ class, structure

10

Data Types

● User Defined Data Types
○ declared by the developer in their source code -OR-
○ user types created in a third party library

○ examples in C++
■ enum class Spices { mint, basil, salt, pepper };
■ class QString;
■ class Employee;

11

Data Types

● Abstract Data Type
○ any type which does not specify an implementation

○ definition of a Stack includes the push() and pop() functions
■ well defined in computer science
■ implementation depends on the storage container

○ an abstract class does not implement all methods it declares

○ you do not directly instantiate an abstract class
○ users should create a subclass and then instantiate the child class

12

Pointers

● Pointer Data Type
○ values

■ nullptr or an address where some data is located

○ operations
■ assignment
■ dereference
■ comparison
■ subtraction of two pointer values
■ addition or subtraction with an integer value

13

Pointers

● Pointer Data Type
○ declaring a pointer must include the type of what is being stored

○ size of the pointer type is based on the platform
○ required allocation for the data is determined by the type used

in the pointer declaration

int * var1; // var1 declares a ptr to a value of type int

Widget * var2; // var2 declares a ptr to a value of type Widget

14

References

● Reference Data Type
○ values

■ determined by the values of the type being referenced

○ operations
■ determined by the operations of the type which is referenced
■ might be limited to a subset of the operations if there are

qualifiers such as const

15

References

● Reference Data Type
○ lvalue reference

■ declared object can be modified by the called function and
then observed by the original caller

○ const reference
■ called function can not modify the passed object

○ rvalue reference
■ declared object can be modified by the called function

however the original caller should never observe the changes

16

References

● Reference Data Type
○ declaring an lvalue reference involves specifying the type and a

single & before the variable

○ countB is a variable which is bound to countA
○ modifying the value of countB will change the value of countA

int countA = 12;
int & countB = countA;

17

References

● Reference Data Type
○ declaring a const reference involves specifying the type and a single

& before the variable

○ countB is a variable which is bound to countA
○ modifying the value of countB is not permitted
○ changing countA is allowed and will be visible by countB

int countA = 17;
const int & countB = countA;

18

References

● Reference Data Type
○ declaring an rvalue reference involves specifying the type and a

double && before the variable

○ countB is a variable which is bound to countA
○ modifying the value of countB will change the value of countA
○ after the std::move() countA should never be observed

int countA = 8;
int && countB = std::move(countA);

19

Value Categories

● Value Categories
○ five main groups

■ glvalue, prvalue, xvalue, lvalue, rvalue

○ every object, variable, or expression is either . . .
■ an lvalue or an rvalue

○ if any of these are true it is an lvalue
■ has an identity
■ has a name
■ resides at a memory location

20

Value Categories

● lvalue
○ button is an lvalue and its data type is pointer to Widget
○ *button is an lvalue and its data type is Widget

Widget * button = new Widget;

● rvalue
○ passed value is an rvalue and its data type is std::string
○ result is an lvalue and its data type is int

int result = someFunction(std::string(“emBO”));

21

Expressions

● Definition of an Expression
○ every expression has two attributes

■ data type
■ value category

○ evaluation of an expression always generates a result

int sum; // line 1
sum = 10 + 20; // line 2

auto index = getIndex(); // line 3
++index; // line 4

22

Expressions

● Definition of an Expression
○ getIndex() is a function call expression
○ value category depends on the return type

■ returns by value then it is an rvalue (prvalue)
■ returns an lvalue reference then it is an lvalue
■ returns an rvalue reference then it is rvalue (xvalue)

auto index = getIndex(); // line 3
++index; // line 4

23

Parameter Passing

● Passing Arguments
○ functions in C always receive parameters by value

■ programmers call this “pass by value”

○ functions in C++ can receive parameters by value or by reference
■ programmers call this “pass by value”
■ programmers call this “pass by reference”

○ “pass by X” is misleading . . .

24

Parameter Passing

● Example 1
○ int data type, value is 27

int dayA = 27;

25

Variable Memory Address Value

dayA 1000 27

Parameter Passing

● Example 1.1

int dayA = 27;
myFunc(dayA);

void myFunc(X dayB);

26

Options for X

const int dayB

 int dayB

const int & dayB

 int & dayB

Parameter Passing

● Example 1.2

int dayA = 27;
myFunc(&dayA);

void myFunc(X dayB);

27

Options for X

const int * dayB

 int * dayB

const int * const & dayB

 int * const & dayB

const int * && dayB

 int * && dayB

Parameter Passing

● Example 1.3

int dayA = 27;
myFunc(*dayA);

void myFunc(X dayB);

28

Options for X

dereference of an int
data type is not valid

Parameter Passing

● Example 2
○ pointer data type, int value is 3

int *monthA = new int(3);

29

Variable Memory Address Value

monthA 1000 5000

5000 3

Parameter Passing

● Example 2.1

int * monthA = new int(3);
myFunc(monthA);

void myFunc(X monthB);

30

Options for X

const int * monthB

 int * monthB

const int * const & monthB

 int * & monthB

 int * const & monthB

Parameter Passing

● Example 2.2

int * monthA = new int(3);
myFunc(&monthA);

void myFunc(X monthB);

31

Options for X

const int * const * monthB

 int * const * monthB

 int ** monthB

const int * const * const & monthB

 int * const * const & monthB

 int ** const & monthB

 int ** && monthB

 int * const * && monthB

Parameter Passing

● Example 2.3

int * monthA = new int(3);
myFunc(*monthA);

void myFunc(X monthB);

32

Options for X

const int monthB

 int monthB

const int & monthB

 int & monthB

Parameter Passing

● Example 3
○ reference data type, int value is 2021

int yearA = 2021;
int & yearB = yearA;

33

Variable Memory Address Value

yearA 1000 2021

yearB 1000 2021

Parameter Passing

● Example 3.1

int yearA = 2021;
int & yearB = yearA;
myFunc(yearB);

void myFunc(X yearC);

34

Options for X

const int yearC

 int yearC

const int & yearC

 int & yearC

Parameter Passing

● Example 3.2

int yearA = 2021;
int & yearB = yearA;
myFunc(&yearB);

void myFunc(X yearC);

35

Options for X

const int * yearC

 int * yearC

const int * const & yearC

 int * const & yearC

const int * && yearC

 int * && yearC

Parameter Passing

● Example 3.3

int yearA = 2021;
int & yearB = yearA;
myFunc(*yearB);

void myFunc(X yearC);

36

Options for X

dereference of an int
data type is not valid

Parameter Passing

● Reference to a Pointer
○ button name might be “Email”, “Print”, “Cancel”

Widget * button = nullptr;
if (showDialog(button)) {
 printf(“Button Clicked = %s”, button->name());
}

bool showDialog(Widget *& pushButton) { // received by reference
 if (! runDialog()) {
 return false;
 }

 pushButton = getSelectedButton();
 return true;
}

37

Parameter Passing

● Pointer to a Pointer
○ button name might be “Email”, “Print”, “Cancel”

Widget * button = nullptr;
if (showDialog(& button)) {
 printf(“Button Clicked = %s”, button->name());
}

bool showDialog(Widget ** pushButton) { // received by value
 if (! runDialog()) {
 return false;
 }

 *pushButton = getSelectedButton();
 return true;
}

38

Parameter Passing

● Summary
○ pass by value should be thought of as receive by value

■ value category for the argument which is being passed
can be an lvalue or an rvalue
● lvalues will be copied
● rvalues will be moved

○ pass by reference should be thought of as receive by reference
■ value category for the argument which is being passed

depends on which type of reference is received
● only an lvalue can be passed to an lvalue reference
● any value category can be passed to a const reference
● only an rvalue can be passed to an rvalue reference

39

Presentations

❏ Why CopperSpice, Why DoxyPress
❏ Compile Time Counter
❏ Modern C++ Data Types
❏ CsString library (unicode)
❏ Multithreading in C++
❏ Multithreading using libGuarded
❏ Signals and Slots
❏ Templates in the Real World
❏ What’s in a Container
❏ Modern C++ Threads
❏ C++ Undefined Behavior
❏ Regular Expressions
❏ Type Traits
❏ C++ Tapas (typedef, forward declarations)
❏ C++ Tapas (typename, virtual, pure virtual)
❏ Overload Resolution
❏ Futures & Promises
❏ Thread Safety
❏ Constexpr Static Const
❏ When Your Codebase is Old Enough to Vote

40

❏ Sequencing, Linkage, Inheritance
❏ Evolution of Graphics Technology
❏ GPU, Pipeline, and the Vector Graphics API
❏ Declarations and Type Conversions
❏ C++ ISO Standard
❏ Inline Namespaces
❏ Lambdas in Action
❏ Any Optional, Variant
❏ CsPaint Library
❏ Moving to C++17
❏ What is the C++ Standard Library
❏ Attributes, Copy Elision, Time Complexity
❏ Qualifiers
❏ C++ Memory Model
❏ Atomics, Mutexes
❏ Mutexes to CsLibGuarded

Please subscribe to our YouTube Channel
https://www.youtube.com/copperspice

Applications

● KitchenSink
○ contains 30 demos and links with almost every CopperSpice library

● Diamond
○ programmers editor which uses the CopperSpice libraries

● DoxyPress & DoxyPressApp
○ application for generating source code and API documentation

41

Where to find CopperSpice

● www.copperspice.com
● twitter: @copperspice_cpp

● ansel@copperspice.com
● barbara@copperspice.com

● source, binaries, documentation files
○ download.copperspice.com

● source code repository
○ github.com/copperspice

● discussion
○ forum.copperspice.com

42

